Nichtlineare Optimierung: Mathematik Kompakt
Autor Michael Ulbrich, Stefan Ulbrichde Limba Germană Paperback – 12 apr 2012
Im Teil über die unrestringierte Optimierung werden sowohl Trust-Region- als auch Liniensuch-Methoden zur Globalisierung behandelt. Für letztere wird ein ebenso leistungsfähiges wie intuitives Konzept der zulässigen Suchrichtungen und Schrittweiten entwickelt. Die schnelle lokale Konvergenz Newton-artiger Verfahren und ihre Globalisierung sind weitere wichtige Themengebiete. Das Kapitel über restringierte Optimierung entwickelt notwendige und hinreichende Optimalitätsbedingungen und geht auf wichtige numerische Verfahren, insbesondere Sequential Quadratic Programming, Penalty- und Barriereverfahren ein. Der Bezug von Barriereverfahren zu den aktuell intensiv untersuchten Innere-Punkte-Verfahren wird ebenfalls hergestellt.
Din seria Mathematik Kompakt
- Preț: 129.94 lei
- Preț: 136.83 lei
- Preț: 144.29 lei
- Preț: 129.11 lei
- Preț: 132.33 lei
- Preț: 147.17 lei
- Preț: 143.31 lei
- Preț: 144.49 lei
- Preț: 143.52 lei
- Preț: 145.26 lei
- Preț: 146.24 lei
- Preț: 144.49 lei
- Preț: 128.47 lei
- Preț: 144.29 lei
- Preț: 142.38 lei
- Preț: 145.06 lei
- Preț: 178.08 lei
- Preț: 145.65 lei
- Preț: 145.44 lei
- Preț: 145.06 lei
- Preț: 149.12 lei
- Preț: 130.71 lei
- Preț: 145.26 lei
- Preț: 147.56 lei
- Preț: 144.67 lei
- Preț: 150.07 lei
- Preț: 147.93 lei
- Preț: 148.16 lei
Preț: 147.17 lei
Nou
Puncte Express: 221
Preț estimativ în valută:
28.17€ • 29.30$ • 23.61£
28.17€ • 29.30$ • 23.61£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034601429
ISBN-10: 3034601425
Pagini: 150
Ilustrații: VIII, 148 S.
Dimensiuni: 168 x 240 x 10 mm
Greutate: 0.34 kg
Ediția:2012
Editura: Springer
Colecția Birkhäuser
Seria Mathematik Kompakt
Locul publicării:Basel, Switzerland
ISBN-10: 3034601425
Pagini: 150
Ilustrații: VIII, 148 S.
Dimensiuni: 168 x 240 x 10 mm
Greutate: 0.34 kg
Ediția:2012
Editura: Springer
Colecția Birkhäuser
Seria Mathematik Kompakt
Locul publicării:Basel, Switzerland
Public țintă
Upper undergraduateCuprins
Vorwort.- I. Problemstellung und Beispiele: 1. Problemstellung und grundlegende Begriffe.- 2. Beispiele.- 3. Einige Notationen.- II. Unrestringierte Optimierung: 4. Einführung.- 5. Optimalitätsbedingungen.- 6. Konvexität.- 7. Das Gradientenverfahren.- 8. Allgemeine Abstiegsverfahren.- 9. Schrittweitenregeln.- 10. Das Newton-Verfahren.- 11. Newton-artige Verfahren.- 12. Inexakte Newton-Verfahren.- 13. Quasi-Newton Verfahren.- 14. Trust-Region-Verfahren.- III. Restringierte Optimierung: 15. Einführung.- 16. Optimalitätsbedingungen.- 17. Dualität.- 18. Penalty-Verfahren.- 19. Sequential Quadratic Programming.- 20. Quadratische Optimierungsprobleme.- 21. Barriere-Verfahren.
Notă biografică
Michael Ulbrich ist Professor für Mathematische Optimierung an der Technischen Universität München.
Stefan Ulbrich ist Professor für Nichtlineare Optimierung an der Technischen Universität Darmstadt.
Stefan Ulbrich ist Professor für Nichtlineare Optimierung an der Technischen Universität Darmstadt.
Textul de pe ultima copertă
Das Buch gibt eine Einführung in zentrale Konzepte und Methoden der Nichtlinearen Optimierung. Es ist aus Vorlesungen der Autoren an der TU München, der TU Darmstadt und der Universität Hamburg entstanden. Der Inhalt des Buches wurde insbesondere auf mathematische Bachelorstudiengänge zugeschnitten und hat sich als Basis entsprechender Vorlesungen sowie für eine anschließende Vertiefung im Bereich der Optimierung bewährt. Der Umfang entspricht zwei zweistündigen oder einer vierstündigen Vorlesung, wobei etwa in gleichem Umfang sowohl unrestringierte Optimierungsprobleme als auch Optimierungsprobleme mit Nebenbedingungen behandelt werden.
Im Teil über die unrestringierte Optimierung werden sowohl Trust-Region- als auch Liniensuch-Methoden zur Globalisierung behandelt. Für letztere wird ein ebenso leistungsfähiges wie intuitives Konzept der zulässigen Suchrichtungen und Schrittweiten entwickelt. Die schnelle lokale Konvergenz Newton-artiger Verfahren und ihre Globalisierung sind weitere wichtige Themengebiete. Das Kapitel über restringierte Optimierung entwickelt notwendige und hinreichende Optimalitätsbedingungen und geht auf wichtige numerische Verfahren, insbesondere Sequential Quadratic Programming, Penalty- und Barriereverfahren ein. Der Bezug von Barriereverfahren zu den aktuell intensiv untersuchten Innere-Punkte-Verfahren wird ebenfalls hergestellt.
Im Teil über die unrestringierte Optimierung werden sowohl Trust-Region- als auch Liniensuch-Methoden zur Globalisierung behandelt. Für letztere wird ein ebenso leistungsfähiges wie intuitives Konzept der zulässigen Suchrichtungen und Schrittweiten entwickelt. Die schnelle lokale Konvergenz Newton-artiger Verfahren und ihre Globalisierung sind weitere wichtige Themengebiete. Das Kapitel über restringierte Optimierung entwickelt notwendige und hinreichende Optimalitätsbedingungen und geht auf wichtige numerische Verfahren, insbesondere Sequential Quadratic Programming, Penalty- und Barriereverfahren ein. Der Bezug von Barriereverfahren zu den aktuell intensiv untersuchten Innere-Punkte-Verfahren wird ebenfalls hergestellt.
Caracteristici
Entwicklung allgemeiner Abstiegsverfahrens basierend auf dem Konzept der zulässigen Suchrichtungen und Schrittweiten Basierend auf sehr erfolgreichen Vorlesungszyklen zur Optimierung Basis für weitere Vertiefung im Bereich Optimierung Europäische Tradition, mathematische Sachverhalte präzise mit Beweisen zu präsentieren, ohne technische Überladung