Cantitate/Preț
Produs

Elliptische Differentialgleichungen zweiter Ordnung: Eine Einführung mit historischen Bemerkungen: Masterclass

Autor Ernst Wienholtz, Hubert Kalf, Thomas Kriecherbauer
de Limba Germană Paperback – 3 iul 2009
Dieses Lehrbuch bringt in einem stufenweisen Aufbau, ausgehend von der Mittelwerteigenschaft harmonischer Funktionen, über die Perronsche Methode zur Lösung des Dirichletproblems für die Laplacegleichung und den Kelloggschen Satz über das Randverhalten von Lösungen der Poissongleichung, eine Darstellung der klassischen Theorie linearer elliptischer Differentialgleichungen 2. Ordnung.
Der Zusammenhang mit schwachen Lösungen solcher Gleichungen wird hergestellt. Hervorzuheben sind zahlreiche neue und vereinfachte Beweise, so für die Symmetrie und die Abschätzung der Greenschen Funktion und ihrer Ableitungen. Der sparsame und effiziente Einsatz von Hilfsmitteln ermöglicht den Studierenden das Eindringen in dieses Gebiet bereits ab dem 2. Studienjahr. Die Beschreibung von Beweisvarianten erleichtert es dem Dozenten, für Vorlesung oder Seminar eine Auswahl zu treffen. Eine Besonderheit dieses Buches bilden die vielen historischen Bezüge und Literaturhinweise, die auch dem Fachmann manches Neue bieten.
Citește tot Restrânge

Din seria Masterclass

Preț: 25179 lei

Nou

Puncte Express: 378

Preț estimativ în valută:
4818 5069$ 3989£

Carte tipărită la comandă

Livrare economică 14-28 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540457176
ISBN-10: 3540457178
Pagini: 416
Ilustrații: XI, 401 S.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Masterclass

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Upper undergraduate

Cuprins

mit Bemerkungen zur historischen Entwicklung.- Die Laplacegleichung.- Das Dirichletproblem f#x00FC;r harmonische Funktionen.- Die Poissongleichung #x2013; #x0394; =.- Die Greensche Funktion f#x00FC;r die Kugel mit Anwendungen.- Die Fredholmsche Alternative f#x00FC;r das Dirichletproblem.- Der Kelloggsche Satz.- Die globale A-Priori-Absch#x00E4;tzung von Schauder und ihre Anwendung auf lineare und quasilineare Dirichletprobleme.- Innere Absch#x00E4;tzungen und innere Regularit#x00E4;t.- Schwache L#x00F6;sungen.

Recenzii

Aus den Rezensionen:
 “... liegt eine sehr ausfuhrliche Darstellung der klassischen Theorie linearer elliptischer Differential gleichungen 2 Ordnung vor. ... Dem Ziel der Springer Reihe Grundwissen Mathematik gemaß ist der Text mit zahlreichen Querverweisen auf die Literatur und ausführlichen Bemerkungen über die historische Entwicklung des Gebietes garniert. ... Eine Vorlesung zu dem Thema verlangt nach einer Selektion des Materials wofür die Autoren auch Hinweise geben.“ (W.Auzinger, in: IMN Internationale Mathematische Nachrichten, December/2010, Issue 215, S. 50)
“ ... Das vorliegende Buch bietet eine umfassende Einführung in die Theorie der elliptischen Differentialgleichungen zweiter Ordnung. ... Die großen Stärken des Buches sind sicherlich die VielzahI von detaillierten historischen Bemerkungen und die Verwendung einiger neuerer bzw. vereinfachter Beweise ... Das Buch ist somit gut für Studenten im zweiten Studienabschnitt geeignet. Insgesamt handelt es sich um eine hervorragende Bereicherung der aktuellen Literatur zu diesem Thema und ich kann es nur jedem Interessierten empfehlen.“ (G. Teschl, Monatshefte für Mathematik, April/2010, Vol. 160, Issue 1, S. 112 )

Textul de pe ultima copertă

Dieses Lehrbuch bringt in einem stufenweisen Aufbau, ausgehend von der Mittelwerteigenschaft harmonischer Funktionen, über die Perronsche Methode zur Lösung des Dirichletproblems für die Laplacegleichung und den Kelloggschen Satz über das Randverhalten von Lösungen der Poissongleichung, eine Darstellung der klassischen Theorie linearer elliptischer Differentialgleichungen 2. Ordnung. Der Zusammenhang mit schwachen Lösungen solcher Gleichungen wird hergestellt. Hervorzuheben sind zahlreiche neue und vereinfachte Beweise, so für die Symmetrie und die Abschätzung der Greenschen Funktion und ihrer Ableitungen. Der sparsame und effiziente Einsatz von Hilfsmitteln ermöglicht den Studierenden das Eindringen in dieses Gebiet bereits ab dem 2. Studienjahr. Die Beschreibung von Beweisvarianten erleichtert es dem Dozenten, für Vorlesung oder Seminar eine Auswahl zu treffen. Eine Besonderheit dieses Buches bilden die vielen historischen Bezüge und Literaturverweise, die auch dem Fachmann manches Neue bieten werden.

Caracteristici

Erstmalig werden die Resultate in Zusammenhang mit ihrer historischen Entwicklung dargestellt Viele neue und vereinfachte Beweise und zahlreiche historische Bezüge und Literaturverweise Mit Aufgaben am Ende jedes Kapitels Includes supplementary material: sn.pub/extras