Optimal Unbiased Estimation of Variance Components: Lecture Notes in Statistics, cartea 39
Autor James D. Malleyen Limba Engleză Paperback – dec 1986
Din seria Lecture Notes in Statistics
- 17% Preț: 490.18 lei
- 20% Preț: 561.41 lei
- 15% Preț: 621.27 lei
- 15% Preț: 622.36 lei
- 18% Preț: 918.78 lei
- 18% Preț: 1196.10 lei
- 18% Preț: 916.18 lei
- 13% Preț: 310.65 lei
- 18% Preț: 916.18 lei
- 15% Preț: 640.02 lei
- 18% Preț: 978.42 lei
- 18% Preț: 915.58 lei
- 18% Preț: 920.00 lei
- 18% Preț: 967.38 lei
- 15% Preț: 615.38 lei
- 15% Preț: 623.02 lei
- 15% Preț: 624.59 lei
- Preț: 372.44 lei
- 18% Preț: 861.17 lei
- Preț: 372.23 lei
- 15% Preț: 615.21 lei
- 15% Preț: 617.46 lei
- Preț: 382.53 lei
- 15% Preț: 614.59 lei
- 15% Preț: 619.03 lei
- 15% Preț: 682.74 lei
- 15% Preț: 624.28 lei
- 15% Preț: 626.18 lei
- 15% Preț: 626.67 lei
- Preț: 371.49 lei
- 15% Preț: 618.08 lei
- 15% Preț: 629.36 lei
- Preț: 369.80 lei
- 18% Preț: 861.60 lei
- 15% Preț: 616.15 lei
- 15% Preț: 630.17 lei
- Preț: 368.15 lei
- 15% Preț: 629.99 lei
- 15% Preț: 629.04 lei
- 18% Preț: 758.00 lei
- 15% Preț: 622.84 lei
- 18% Preț: 1071.02 lei
- 15% Preț: 624.74 lei
- Preț: 373.76 lei
- 15% Preț: 622.04 lei
- 15% Preț: 631.74 lei
- 15% Preț: 627.93 lei
Preț: 370.74 lei
Nou
Puncte Express: 556
Preț estimativ în valută:
70.96€ • 73.96$ • 59.07£
70.96€ • 73.96$ • 59.07£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387964492
ISBN-10: 0387964495
Pagini: 146
Ilustrații: X, 146 p. 1 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387964495
Pagini: 146
Ilustrații: X, 146 p. 1 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
One: The Basic Model and the Estimation Problem.- 1.1 Introduction.- 1.2 An Example.- 1.3 The Matrix Formulation.- 1.4 The Estimation Criteria.- 1.5 Properties of the Criteria.- 1.6 Selection of Estimation Criteria.- Two: Basic Linear Technique.- 2.1 Introduction.- 2.2 The vec and mat Operators.- 2.3 Useful Properties of the Operators.- Three: Linearization of the Basic Model.- 3.1 Introduction.- 3.2 The First Linearization.- 3.3 Calculation of var(y).- 3.4 The Second Linearization of the Basic Model.- 3.5 Additional Details of the Linearizations.- Four: The Ordinary Least Squares Estimates.- 4.1 Introduction.- 4.2 The Ordinary Least Squares Estimates: Calculation.- 4.3 The Inner Structure of the Linearization.- 4.4 Estimable Functions of the Components.- 4.5 Further OLS Facts.- Five: The Seely-Zyskind Results.- 5.1 Introduction.- 5.2 The General Gauss-Markov Theorem: Some History and Motivation.- 5.3 The General Gauss-Markov Theorem: Preliminaries.- 5.4 The General Gauss-Markov Theorem: Statement and Proof.- 5.5 The Zyskind Version of the Gauss-Markov Theorem.- 5.6 The Seely Condition for Optimal unbiased Estimation.- Six: The General Solution to Optimal Unbiased Estimation.- 6.1 Introduction.- 6.2 A Full Statement of the Problem.- 6.3 The Lehmann-Scheffé Result.- 6.4 The Two Types of Closure.- 6.5 The General Solution.- 6.6 An Example.- Seven: Background from Algebra.- 7.1 Introduction.- 7.2 Groups, Rings, Fields.- 7.3 Subrings and Ideals.- 7.4 Products in Jordan Rings.- 7.5 Idempotent and Nilpotent Elements.- 7.6 The Radical of an Associative or Jordan Algebra.- 7.7 Quadratic Ideals in Jordan Algebras.- Eight: The Structure of Semisimple Associative and Jordan Algebras.- 8.1 Introduction.- 8.2 The First Structure Theorem.- 8.3 Simple Jordan Algebras.- 8.4 SimpleAssociative Algebras.- Nine: The Algebraic Structure of Variance Components.- 9.1 Introduction.- 9.2 The Structure of the Space of Optimal Kernels.- 9.3 The Two Algebras Generated by Sp(?2).- 9.4 Quadratic Ideals in Sp(?2).- 9.5 Further Properties of the Space of Optimal Kernels.- 9.6 The Case of Sp(?2) Commutative.- 9.7 Examples of Mixed Model Structure Calculations: The Partially Balanced Incomplete Block Designs.- Ten: Statistical Consequences of the Algebraic Structure Theory.- 10.1 Introduction.- 10.2 The Jordan Decomposition of an Optimal Unbiased Estimate.- 10.3 Non-Negative Unbiased Estimation.- Concluding Remarks.- References.