Elliptic Modular Functions: An Introduction: Grundlehren der mathematischen Wissenschaften, cartea 203
Autor B. Schoeneberg Traducere de J.R. Smart, E. A. Schwandten Limba Engleză Paperback – 21 dec 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 723.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 584.63 lei
- 15% Preț: 700.05 lei
- Preț: 333.01 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 762.70 lei
Preț vechi: 930.12 lei
-18% Nou
Puncte Express: 1144
Preț estimativ în valută:
146.01€ • 151.77$ • 121.06£
146.01€ • 151.77$ • 121.06£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642656651
ISBN-10: 364265665X
Pagini: 252
Ilustrații: VIII, 236 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364265665X
Pagini: 252
Ilustrații: VIII, 236 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. The Modular Group.- § 1. Inhomogeneous Linear Transformations.- § 2. Homogeneous Linear Transformations.- § 3. The Modular Group. Fixed Points.- § 4. Generators and Relations.- § 5. Fundamental Region.- II. The Modular Functions of Level One.- § 1. Definition and Properties of Modular Functions.- § 2. Extension of the Modular Group by Reflections.- § 3. Existence of Modular Functions. The Absolute Modular Invariant J.- § 4. Modular Form.- § 5. Entire Modular Forms.- III. Eisenstein Series.- § 1. The Eisenstein Series in the Case of Absolute Convergence.- § 2. The Eisenstein Series in the Case of Conditional Convergence.- § 3. The Discriminant ?.- IV. Subgroups of the Modular Group.- § 1. Subgroups of the Modular Group.- § 2. The Principal Congruence Groups.- § 3. Congruence Groups.- § 4. Fundamental Region.- § 5. Fundamental Regions for Special Subgroups.- § 6. The Quotient Space ?*/?1.- § 7. Genus of the Fundamental Region.- § 8. The Genus of the Fundamental Region of ?0(N).- V. Function Theory for the Subgroups of Finite Index in the Modular Group.- § 1. Functions for Subgroups.- § 2. Modular Forms for Subgroups.- § 3. Modular Forms of Dimension ?2 and Integrals.- § 4. The Riemann-Roch Theorem and Applications.- VI. Fields of Modular Functions.- § 1. Algebraic Field Extensions of ?(J).- § 2. The Fields ?$$\left( {\sqrt {J - 1} } \right)$$ and ?$$\left( {{}^3\sqrt J } \right)$$.- § 3. Transformation Groups of Order n.- § 4. Transformation Fields of Order n.- § 5. The Modular Equation of Order n.- § 6. The Galois Group of the Modular Equation.- § 7. Transformations of Order n for Modular Forms.- VII. Eisenstein Series of Higher Level.- § 1. The Series in the Case of Absolute Convergence.- § 2. The Series of Dimension?1 and ?2.- § 3. Properties of the Series of Dimension ?1 and ?2. Applications.- § 4. Division Equation.- VIII. The Integrals of ?-Division Values.- § 1. The Space of ?-Division Values. Integrals.- § 2. An Asymptotic Formula and the Behavior of the Integrals under the Transformation T.- § 3. A Second Look at the Behavior of the Integrals under the Transformation T. The General Transformation Formula.- § 4. Consequences of the Transformation Formula.- IX. Theta Series.- § 1. General Theta Series. An Operator.- § 2. Special Theta Series.- § 3. Behavior of the Theta Series under Modular Transformations.- § 4. Behavior of the Theta Series under Congruence Groups. Gaussian Sums.- § 5. Examples and Applications.- Literature.- Index of Definitions.- Index of Notations.