Arithmetical Functions: Grundlehren der mathematischen Wissenschaften, cartea 167
Autor Komaravolu Chandrasekharanen Limba Engleză Paperback – 31 mai 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 384.86 lei
Nou
Puncte Express: 577
Preț estimativ în valută:
73.65€ • 76.31$ • 61.47£
73.65€ • 76.31$ • 61.47£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642500282
ISBN-10: 3642500285
Pagini: 252
Ilustrații: XI, 236 p. 1 illus.
Dimensiuni: 152 x 229 x 20 mm
Greutate: 0.34 kg
Ediția:1970
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642500285
Pagini: 252
Ilustrații: XI, 236 p. 1 illus.
Dimensiuni: 152 x 229 x 20 mm
Greutate: 0.34 kg
Ediția:1970
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I The prime number theorem and Selberg’s method.- § 1. Selberg’s formula.- § 2. A variant of Selberg’s formula.- § 3. Wirsing’s inequality.- § 4. The prime number theorem.- § 5. The order of magnitude of the divisor function.- Notes on Chapter I.- II The zeta-function of Riemann.- § 1. The functional equation.- § 2. The Riemann-von Mangoldt formula.- § 3. The entire function ?.- § 4. Hardy’s theorem.- § 5. Hamburger’s theorem.- Notes on Chapter II.- III Littlewood’s theorem and Weyl’s method.- § 1. Zero-free region of ?.- § 2. Weyl’s inequality.- § 3. Some results of Hardy and Littlewood and of Weyl.- § 4. Littlewood’s theorem.- § 5. Applications of Littlewood’s theorem.- Notes on Chapter III.- IV Vinogradov’s method.- § 1. A refinement of Littlewood’s theorem.- § 2. An outline of the method.- § 3. Vinogradov’s mean-value theorem.- § 4. Vinogradov’s inequality.- § 5. Estimation of sections of ?(s) in the critical strip.- § 6. Chudakov’s theorem.- § 7. Approximation of ?(x).- Notes on Chapter IV.- V Theorems of Hoheisel and of Ingham.- § 1. The difference between consecutive primes.- § 2. Landau’s formula for the Chebyshev function ?.- § 3. Hoheisel’s theorem.- § 4. Two auxiliary lemmas.- § 5. Ingham’s theorem.- § 6. An application of Chudakov’s theorem.- Notes on Chapter V.- VI Dirichlet’s L-functions and Siegel’s theorem.- § 1. Characters and L-functions.- § 2. Zeros of L-functions.- § 3. Proper characters.- § 4. The functional equation of L(s,?).- § 5. Siegel’s theorem.- Notes on Chapter VI.- VII Theorems of Hardy-Ramanujan and of Rademacher on the partition function.- § 1. The partition function.- § 2. A simple case.- § 3. A bound for p(n).- § 4. A property of the generatingfunction of p(n.- § 5. The Dedekind ?-function.- § 6. The Hardy-Ramanujan formula.- § 7. Rademacher’s identity.- Notes on Chapter VII.- VIII Dirichlet’s divisor problem.- § 1. The average order of the divisor function.- § 2. An application of Perron’s formula.- § 3. An auxiliary function.- § 4. An identity involving the divisor function.- § 5. Voronoi’s theorem.- § 6. A theorem of A. S. Besicovitch.- § 7. Theorems of Hardy and of Ingham.- § 8. Equiconvergence theorems of A. Zygmund.- § 9. The Voronoi identity.- Notes on Chapter VIII.- A list of books.