Branching Processes: Grundlehren der mathematischen Wissenschaften, cartea 196
Autor Krishna B. Athreya, Peter E. Neyen Limba Engleză Paperback – 25 oct 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 696.68 lei
Preț vechi: 819.62 lei
-15% Nou
Puncte Express: 1045
Preț estimativ în valută:
133.32€ • 138.35$ • 111.44£
133.32€ • 138.35$ • 111.44£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642653735
ISBN-10: 3642653731
Pagini: 308
Ilustrații: XII, 288 p.
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642653731
Pagini: 308
Ilustrații: XII, 288 p.
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. The Galton-Watson Process.- A. Preliminaries.- B. A First Look at Limit Theorems.- C. Finer Limit Theorems.- D. Further Ramifications.- Complements and Problems I.- II. Potential Theory.- 1. Introduction.- 2. Stationary Measures: Existence, Uniqueness, and Representation.- 3. The Local Limit Theorem for the Critical Case.- 4. The Local Limit Theorem for the Supercritical Case.- 5. Further Properties of W; A Sharp Global Limit Law; Positivity of the Density.- 6. Asymptotic Properties of Stationary Measures.- 7. Green Function Behavior.- 8. Harmonic Functions.- 9. The Space-Time Boundary.- Complements and Problems II.- III. One Dimensional Continuous Time Markov Branching Processes.- 1. Definition.- 2. Construction.- 3. Generating Functions.- 4. Extinction Probability and Moments.- 5. Examples: Binary Fission, Birth and Death Process.- 6. The Embedded Galton-Watson Process and Applications to Moments.- 7. Limit Theorems.- 8. More on Generating Functions.- 9. Split Times.- 10. Second Order Properties.- 11. Constructions Related to Poisson Processes.- 12. The Embeddability Problem.- Complements and Problems III.- IV. Age-Dependent Processes.- 1. Introduction.- 2. Existence and Uniqueness.- 3. Comparison with Galton-Watson Process; Embedded Generation Process; Extinction Probability.- 4. Renewal Theory.- 5. Moments.- 6. Asymptotic Behavior of F(s, t) in the Critical Case.- 7. Asymptotic Behavior of F(s, t) when m?1: The Malthusian Case.- 8. Asymptotic Behavior of F(s, t) when m?1: Sub-Exponential Case.- 9. The Exponential Limit Law in the Critical Case.- 10. The Limit Law for the Subcritical Age-Dependent Process.- 11. Limit Theorems for the Supercritical Case.- Complements and Problems IV.- V. Multi-Type Branching Processes.- 1. Introduction and Definitions.- 2.Moments and the Frobenius Theorem.- 3. Extinction Probability and Transience.- 4. Limit Theorems for the Subcritical Case.- 5. Limit Theorems for the Critical Case.- 6. The Supercritical Case and Geometric Growth.- 7. The Continuous Time, Multitype Markov Case.- 8. Linear Functionals of Supercritical Processes.- 9. Embedding of Urn Schemes into Continuous Time Markov Branching Processes.- 10. The Multitype Age-Dependent Process.- Complements and Problems V.- VI. Special Processes.- 1. A One Dimensional Branching Random Walk.- 2. Cascades; Distributions of Generations.- 3. Branching Diffusions.- 4. Martingale Methods.- 5. Branching Processes with Random Environments.- 6. Continuous State Branching Processes.- 7. Immigration.- 8. Instability.- Complements and Problems VI.- List of Symbols.- Author Index.