Cantitate/Preț
Produs

Coherent Analytic Sheaves: Grundlehren der mathematischen Wissenschaften, cartea 265

Autor H. Grauert, R. Remmert
en Limba Engleză Paperback – 18 noi 2011

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 71107 lei

Preț vechi: 86715 lei
-18% Nou

Puncte Express: 1067

Preț estimativ în valută:
13608 14136$ 11304£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642695841
ISBN-10: 3642695841
Pagini: 276
Ilustrații: XVIII, 252 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Complex Spaces.- § 1. The Notion of a Complex Space.- § 2. General Properties of Complex Spaces.- § 3. Direct Products and Graphs.- § 4. Complex Spaces and Cohomology.- 2. Local Weierstrass Theory.- § 1. The Weierstrass Theorems.- § 2. Algebraic Structure of $${O_{{C^n},0}}$$.- § 3. Finite Maps.- §4. The Weierstrass Isomorphism.- § 5. Coherence of Structure Sheaves.- 3. Finite Holomorphic Maps.- § 1. Finite Mapping Theorem.- § 2. Rückert Nullstellensatz for Coherent Sheaves.- § 3. Finite Open Holomorphic Maps.- § 4. Local Description of Complex Subspaces in ?n.- 4. Analytic Sets. Coherence of Ideal Sheaves.- § 1. Analytic Sets and their Ideal Sheaves.- § 2. Coherence of the Sheaves i (A).- § 3. Applications of the Fundamental Theorem and of the Nullstellensatz.- § 4. Coherent and Locally Free Sheaves.- 5. Dimension Theory.- § 1. Analytic and Algebraic Dimension.- § 2. Active Germs and the Active Lemma.- § 3. Applications of the Active Lemma.- § 4. Dimension and Finite Maps. Pure Dimensional Spaces.- § 5. Maximum Principle.- § 6. Noether Lemma for Coherent Analytic Sheaves.- 6. Analyticity of the Singular Locus. Normalization of the Structure Sheaf.- § 1. Embedding Dimension.- § 2. Smooth Points and the Singular Locus.- § 3. The Sheaf M of Germs of Meromorphic Functions.- § 4. The Normalization Sheaf $${\hat O_X}$$.- § 5. Criterion of Normality. Theorem of Oka.- 7. Riemann Extension Theorem and Analytic Coverings.- § 1. Riemann Extension Theorem on Complex Manifolds.- § 2. Analytic Coverings.- § 3. Theorem of Primitive Element.- § 4. Applications of the Theorem of Primitive Element.- § 5. Analytically Normal Vector Bundles.- 8. Normalization of Complex Spaces.- § 1. One-Sheeted Analytic Coverings.- § 2. The Local ExistenceTheorem. Coherence of the Normalization Sheaf.- § 3. The Global Existence Theorem. Existence of Normalization Spaces.- § 4. Properties of the Normalization.- 9. Irreducibility and Connectivity. Extension of Analytic Sets.- § 1. Irreducible Complex Spaces.- § 2. Global Decomposition of Complex Spaces.- § 3. Local and Arcwise Connectedness of Complex Spaces.- § 4. Removable Singularities of Analytic Sets.- § 5. Theorems of Chow, Levi and Hurwitz-Weierstrass.- 10. Direct Image Theorem.- § 1. Polydisc Modules.- § 2. Proof of Lemmata F(q) and Z(q).- § 3. Sheaves of Polydisc Modules.- § 4. Coherence of Direct Image Sheaves.- § 5. Regular Families of Compact Complex Manifolds.- § 6. Stein Factorization and Applications.- Annex. Theory of Sheaves. Notion of Coherence.- §0. Sheaves.- 1. Sheaves and Morphisms — 2. Restrictions, Subsheaves and Sums of Sheaves — 3. Sections. Hausdorff Sheaves.- § 1. Construction of Sheaves from Presheaves.- 1. Presheaves — 2. The Sheaf Associated to a Preshaf — 3. Canonical Presheaves — 4. Image Sheaves.- § 2. Sheaves and Presheaves with Algebraic Structure.- 1. Sheaves of Groups, Rings and A-Modules — 2. The Category of A-Modules. Quotient Sheaves — 3. Presheaves with Algebraic Structure — 4. The Functor Hom — 5. The Functor ?.- § 3. Coherent Sheaves.- 1. Sheaves of Finite Type — 2. Sheaves of Relation Finite Type — 3. Coherent Sheaves.- § 4. Yoga of Coherent Sheaves.- 1. Three Lemma — 2. Consequences of the Three Lemma — 3. Coherence of Trivial Extensions — 4. Coherence of the Functors Hom and ? — 5. Annihilator Sheaves.- Index of Names.