Coherent Analytic Sheaves: Grundlehren der mathematischen Wissenschaften, cartea 265
Autor H. Grauert, R. Remmerten Limba Engleză Paperback – 18 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 725.75 lei
Preț vechi: 885.06 lei
-18% Nou
Puncte Express: 1089
Preț estimativ în valută:
138.91€ • 144.47$ • 116.41£
138.91€ • 144.47$ • 116.41£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642695841
ISBN-10: 3642695841
Pagini: 276
Ilustrații: XVIII, 252 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642695841
Pagini: 276
Ilustrații: XVIII, 252 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Complex Spaces.- § 1. The Notion of a Complex Space.- § 2. General Properties of Complex Spaces.- § 3. Direct Products and Graphs.- § 4. Complex Spaces and Cohomology.- 2. Local Weierstrass Theory.- § 1. The Weierstrass Theorems.- § 2. Algebraic Structure of $${O_{{C^n},0}}$$.- § 3. Finite Maps.- §4. The Weierstrass Isomorphism.- § 5. Coherence of Structure Sheaves.- 3. Finite Holomorphic Maps.- § 1. Finite Mapping Theorem.- § 2. Rückert Nullstellensatz for Coherent Sheaves.- § 3. Finite Open Holomorphic Maps.- § 4. Local Description of Complex Subspaces in ?n.- 4. Analytic Sets. Coherence of Ideal Sheaves.- § 1. Analytic Sets and their Ideal Sheaves.- § 2. Coherence of the Sheaves i (A).- § 3. Applications of the Fundamental Theorem and of the Nullstellensatz.- § 4. Coherent and Locally Free Sheaves.- 5. Dimension Theory.- § 1. Analytic and Algebraic Dimension.- § 2. Active Germs and the Active Lemma.- § 3. Applications of the Active Lemma.- § 4. Dimension and Finite Maps. Pure Dimensional Spaces.- § 5. Maximum Principle.- § 6. Noether Lemma for Coherent Analytic Sheaves.- 6. Analyticity of the Singular Locus. Normalization of the Structure Sheaf.- § 1. Embedding Dimension.- § 2. Smooth Points and the Singular Locus.- § 3. The Sheaf M of Germs of Meromorphic Functions.- § 4. The Normalization Sheaf $${\hat O_X}$$.- § 5. Criterion of Normality. Theorem of Oka.- 7. Riemann Extension Theorem and Analytic Coverings.- § 1. Riemann Extension Theorem on Complex Manifolds.- § 2. Analytic Coverings.- § 3. Theorem of Primitive Element.- § 4. Applications of the Theorem of Primitive Element.- § 5. Analytically Normal Vector Bundles.- 8. Normalization of Complex Spaces.- § 1. One-Sheeted Analytic Coverings.- § 2. The Local ExistenceTheorem. Coherence of the Normalization Sheaf.- § 3. The Global Existence Theorem. Existence of Normalization Spaces.- § 4. Properties of the Normalization.- 9. Irreducibility and Connectivity. Extension of Analytic Sets.- § 1. Irreducible Complex Spaces.- § 2. Global Decomposition of Complex Spaces.- § 3. Local and Arcwise Connectedness of Complex Spaces.- § 4. Removable Singularities of Analytic Sets.- § 5. Theorems of Chow, Levi and Hurwitz-Weierstrass.- 10. Direct Image Theorem.- § 1. Polydisc Modules.- § 2. Proof of Lemmata F(q) and Z(q).- § 3. Sheaves of Polydisc Modules.- § 4. Coherence of Direct Image Sheaves.- § 5. Regular Families of Compact Complex Manifolds.- § 6. Stein Factorization and Applications.- Annex. Theory of Sheaves. Notion of Coherence.- §0. Sheaves.- 1. Sheaves and Morphisms — 2. Restrictions, Subsheaves and Sums of Sheaves — 3. Sections. Hausdorff Sheaves.- § 1. Construction of Sheaves from Presheaves.- 1. Presheaves — 2. The Sheaf Associated to a Preshaf — 3. Canonical Presheaves — 4. Image Sheaves.- § 2. Sheaves and Presheaves with Algebraic Structure.- 1. Sheaves of Groups, Rings and A-Modules — 2. The Category of A-Modules. Quotient Sheaves — 3. Presheaves with Algebraic Structure — 4. The Functor Hom — 5. The Functor ?.- § 3. Coherent Sheaves.- 1. Sheaves of Finite Type — 2. Sheaves of Relation Finite Type — 3. Coherent Sheaves.- § 4. Yoga of Coherent Sheaves.- 1. Three Lemma — 2. Consequences of the Three Lemma — 3. Coherence of Trivial Extensions — 4. Coherence of the Functors Hom and ? — 5. Annihilator Sheaves.- Index of Names.