Convexity and Optimization in Finite Dimensions I: Grundlehren der mathematischen Wissenschaften, cartea 163
Autor Josef Stoer, Christoph Witzgallen Limba Engleză Paperback – 21 mar 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 723.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 584.63 lei
- 15% Preț: 700.05 lei
- Preț: 333.01 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 572.94 lei
Preț vechi: 674.05 lei
-15% Nou
Puncte Express: 859
Preț estimativ în valută:
109.68€ • 114.01$ • 90.94£
109.68€ • 114.01$ • 90.94£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642462184
ISBN-10: 3642462189
Pagini: 312
Ilustrații: X, 298 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1970
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642462189
Pagini: 312
Ilustrații: X, 298 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1970
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Inequality Systems.- 1.1. Linear Combinations of Inequalities.- 1.2. Fourier Elimination.- 1.3. Proof of the Kuhn-Fourier Theorem.- 1.4. Consequence Relations. The Farkas Lemma.- 1.5. Irreducibly Inconsistent Systems.- 1.6. Transposition Theorems.- 1.7. The Duality Theorem of Linear Programming.- 2 Convex Polyhedra.- 2.1. Means and Averages.- 2.2. Dimensions.- 2.3. Polyhedra and their Boundaries.- 2.4. Extreme and Exposed Sets.- 2.5. Primitive Faces. The Finite Basis Theorem.- 2.6. Subspaces. Orthogonality.- 2.7. Cones. Polarity.- 2.8. Polyhedral Cones.- 2.9. A Direct Proof of the Theorem of Weyl.- 2.10. Lineality Spaces.- 2.11. Homogenization.- 2.12. Decomposition and Separation of Polyhedra.- 2.13. Face Lattices of Polyhedral Cones.- 2.14. Polar and Dual Polyhedra.- 2.15. Gale Diagrams.- 3 Convex Sets.- 3.1. The Normed Linear Space Rn.- 3.2. Closure and Relative Interior of Convex Sets.- 3.3. Separation of Convex Sets.- 3.4. Supporting Planes and Cones.- 3.5. Boundedness and Polarity.- 3.6. Extremal Properties.- 3.7. Combinatorial Properties.- 3.8. Topological Properties.- 3.9. Fixed Point Theorems.- 3.10. Norms and Support Functions.- 4 Convex Functions.- 4.1. Convex Functions.- 4.2. Epigraphs.- 4.3. Directorial Derivatives.- 4.4. Differentiable Convex Functions.- 4.5. A Regularity Condition.- 4.6. Conjugate Functions.- 4.7. Strongly Closed Convex Functions.- 4.8. Examples of Conjugate Functions.- 4.9. Generalization of Convexity.- 4.10. Pseudolinear Functions.- 5 Duality Theorems.- 5.1. The Duality Theorem of Fenchel.- 5.2. Duality Gaps.- 5.3. Generalization of Fenchel’s Duality Theorem.- 5.4. Proof of the Generalized Fenchel Theorem.- 5.5. Alternative Characterizations of Stability.- 5.6. Generation of Stable Functions.- 5.7. Rockafellar’s Duality Theorem.-5.8. Duality Theorems of the Dennis-Dorn Type.- 5.9. Duality Theorems for Quadratic Programs.- 6 Saddle Point Theorems.- 6.1. The Minimax Theorem of v. Neumann.- 6.2. Saddle Points.- 6.3. Minimax Theorems for Compact Sets.- 6.4. Minimax Theorems for Noncompact Sets.- 6.5. Lagrange Multipliers.- 6.6. Kuhn-Tucker Theory for Differentiable Functions.- 6.7. Saddle Points of the Lagrangian.- 6.8. Duality Theorems and Lagrange Multipliers.- 6.9. Constrained Minimax Programs.- 6.10. Systems of Convex Inequalities.- Author and Subject Index.