Cantitate/Preț
Produs

Einführung In Die Algebraische Geometrie: Grundlehren der mathematischen Wissenschaften, cartea 51

Autor Bartel Leendert van der Waerden
de Limba Germană Paperback – 5 apr 2012

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 45143 lei

Nou

Puncte Express: 677

Preț estimativ în valută:
8646 8908$ 7242£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642864995
ISBN-10: 3642864996
Pagini: 300
Ilustrații: XII, 282 S.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:2. Aufl. 1973. Softcover reprint of the original 2nd ed. 1973
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Erstes Kapitel. Projektive Geometrie des n-dimensionalen Raumes.- § 1. Der projektive Raum Sn und seine linearen Teilräume.- § 2. Die projektiven Verknüpfungssätze.- § 3. Das Dualitätsprinzip. Weitere Begriffe. Doppelverhältnisse.- § 4. Mehrfach projektive Räume. Der affine Raum.- § 5. Projektive Transformationen.- § 6. Ausgeartete Projektivitäten. Klassifikation der projektiven Transformationen.- § 7. Plückersche Sm-Koordinaten.- § 8. Korrelationen, Nullsysteme und lineare Komplexe.- § 9. Quadriken in Sr und die auf ihnen liegenden linearen Räume.- § 10. Abbildung von Hyperflächen auf Punkte. Lineare Scharen.- § 11. Kubische Raumkurven.- Zweites Kapitel. Algebraische Funktionen.- § 12. Begriff und einfachste Eigenschaften der algebraischen Funktionen.- § 13. Die Werte der algebraischen Funktionen. Stetigkeit und Differenzier- barkeit.- § 14. Reihenentwicklungen für algebraische Funktionen einer Veränderlichen.- §15. Elimination.- Drittes Kapitel. Ebene algebraische Kurven.- §16. Algebraische Mannigfaltigkeiten in der Ebene.- §17. Der Grad einer Kurve. Der Satz von Bezout.- §18. Schnittpunkte von Geraden und Hyperflächen. Polaren.- §19. Rationale Transformation von Kurven. Die duale Kurve.- § 20. Die Zweige einer Kurve.- §21. Die Klassifikation der Singularitäten.- § 22. Wendepunkte. Die Hessesche Kurve.- § 23. Kurven dritter Ordnung.- § 24. Punktgruppen auf einer Kurve dritter Ordnung.- § 25. Die Auflösung der Singularitäten.- § 26. Die Invarianz des Geschlechtes. Die Plückerschen Formeln.- Viertes Kapitel. Algebraische Mannigfaltigkeiten.- § 27. Punkte im weiteren Sinne. Relationstreue Spezialisierung.- § 28. Algebraische Mannigfaltigkeiten. Zerlegung in irreduzible.- § 29. Der allgemeine Punkt und die Dimension einerirreduziblen Mannigfaltigkeit.- § 30. Darstellung von Mannigfaltigkeiten als Partialschnitte von Kegeln und Monoiden.- § 31. Die effektive Zerlegung einer Mannigfaltigkeit in irreduzible mittels der Eliminationstheorie.- Anhang: Algebraische Mannigfaltigkeiten als topologische Gebilde.- Fünftes Kapitel. Algebraische Korrespondenzen und ihre Anwendung.- § 32. Algebraische Korrespondenzen. Das Chaslessche Korrespondenzprinzip.- § 33. Irreduzible Korrespondenzen. Das Prinzip der Konstantenzählung.- § 34. Durchschnitte von Mannigfaltigkeiten mit allgemeinen linearen Räumen und mit allgemeinen Hyperflächen.- § 35. Die 27 Geraden auf einer Fläche dritten Grades.- § 36. Die zugeordnete Form einer Mannigfaltigkeit M.- § 37. Die Gesamtheit der zugeordneten Formen aller Mannigfaltigkeiten M.- Sechstes Kapitel. Der Multiplizitätsbegriff.- § 38. Der Mültiplizitätsbegriff und das Prinzip der Erhaltung der Anzahl.- § 39. Ein Kriterium für Multiplizität Eins.- § 40. Tangentialräume.- § 41. Schnitt von Mannigfaltigkeiten mit speziellen Hyperflächen. Der Bezoutsche Satz.- Siebentes Kapitel. Lineare Scharen.- § 42. Lineare Scharen auf einer algebraischen Mannigfaltigkeit.- § 43. Lineare Scharen und rationale Abbildungen.- § 44. Das Verhalten der linearen Scharen in den einfachen Punkten von M.- § 45. Transformation der Kurven in solche ohne mehrfache Punkte. Stellen und Divisoren.- § 46. Äquivalenz von Divisoren. Divisorenklassen. Vollscharen.- § 47. Die Sätze von Bertini.- Achtes Kapitel. Der NOETHERsche Fundamentalsatz und seine Folgerungen.- § 48. Der Noethersche Fundamentalsatz.- § 49. Adjungierte Kurven. Der Restsatz.- § 50. Der Satz vom Doppelpunktdivisor.- §51. Der Riemann-Rochsche Satz.- § 52. Der Noethersche Satz für den Raum.- § 53.Raumkurven bis zur vierten Ordnung.- Neuntes Kapitel. Die Analyse der Singularitäten ebener Kurven.- § 54. Die Schnittmultiplizität zweier Kurvenzweige.- § 55. Die Nachbarpunkte.- § 56. Das Verhalten der Nachbarpunkte bei Cremonatransformationen.- Zur algebraischen Geometrie 20 — Der Zusammenhangssatz und der Multiplizitätsbegriff.- The Foundation of Algebraic Geometry from Severi to André Weil.