Endliche Gruppen I: Grundlehren der mathematischen Wissenschaften, cartea 134
Autor Bertram Huppertde Limba Germană Paperback – 11 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.82 lei
- 18% Preț: 717.05 lei
- Preț: 410.20 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.72 lei
- 20% Preț: 753.23 lei
- 20% Preț: 824.72 lei
- 24% Preț: 632.96 lei
- Preț: 338.53 lei
- 15% Preț: 579.62 lei
- 14% Preț: 702.18 lei
- Preț: 333.01 lei
- 15% Preț: 459.64 lei
- Preț: 346.37 lei
- Preț: 470.61 lei
- 15% Preț: 439.87 lei
- Preț: 443.65 lei
- 15% Preț: 688.45 lei
- Preț: 411.02 lei
- 15% Preț: 431.60 lei
- 15% Preț: 512.72 lei
- 15% Preț: 572.79 lei
- Preț: 343.36 lei
- 18% Preț: 706.81 lei
- Preț: 376.93 lei
- 15% Preț: 441.77 lei
- 15% Preț: 467.27 lei
- Preț: 451.30 lei
- Preț: 338.87 lei
- Preț: 351.77 lei
- Preț: 474.20 lei
- 15% Preț: 434.79 lei
- Preț: 407.85 lei
- Preț: 377.45 lei
- Preț: 407.27 lei
- 15% Preț: 564.39 lei
- Preț: 483.55 lei
- Preț: 350.29 lei
- Preț: 376.72 lei
- Preț: 407.85 lei
- 18% Preț: 704.95 lei
- Preț: 440.84 lei
- Preț: 375.40 lei
- Preț: 349.34 lei
Preț: 780.68 lei
Preț vechi: 952.05 lei
-18% Nou
Puncte Express: 1171
Preț estimativ în valută:
149.42€ • 155.73$ • 124.39£
149.42€ • 155.73$ • 124.39£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642649820
ISBN-10: 3642649823
Pagini: 812
Ilustrații: XII, 796 S.
Dimensiuni: 152 x 229 x 43 mm
Greutate: 1.07 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642649823
Pagini: 812
Ilustrații: XII, 796 S.
Dimensiuni: 152 x 229 x 43 mm
Greutate: 1.07 kg
Ediția:Softcover reprint of the original 1st ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I Grundlagen.- § 1. Die Gruppenaxiome.- § 2. Untergruppen.- § 3. Normalteiler, Faktorgruppen und Homomorphismen.- § 4. Automorphismen.- § 5. Permutationsgruppen.- § 6. Darstellungen durch Permutationsgruppen.- § 7. Die Sylowschen Sätze.- § 8. Auflösbare Gruppen.- § 9. Direkte Produkte.- § 10. Operatorgruppen und Moduln.- § 11. Der Satz von Jordan-Hölder.- § 12. Direkte Zerlegungen.- § 13. Moduln über Hauptidealringen und abelsche Gruppen.- § 14. Erweiterungstheorie.- § 15. Kranzprodukte.- § 16. Kohomologietheorie.- § 17. Die Sätze von Gaschütz und Maschke.- § 18. Der Satz von Zassenhaus.- § 19. Freie Gruppen und definierende Relationen.- II Permutationsgruppen und lineare Gruppen.- § 1. Primitive und mehrfach transitive Permutationsgruppen.- § 2. Reguläre Normalteiler mehrfach transitiver Permutationsgruppen.- § 3. Primitive Permutationsgruppen mit abelschen Normalteilern.- § 4. Primitive Permutationsgruppen mit transitiven Untergruppen kleineren Grades.- § 5. Die symmetrischen und alternierenden Gruppen.- § 6. Lineare und projektive Gruppen.- § 7. Untergruppen von PGL (n, pf).- § 8. Die Untergruppen von PSL (2, pf).- § 9. Die symplektischen Gruppen.- § 10. Unitäre und orthogonale Gruppen.- III Nilpotente Gruppen und p-Gruppen.- § 1. Kommutatoren und Kommutatorgruppen.- § 2. Zentralreihen und nilpotente Gruppen.- § 3. Die Frattinigruppe.- § 4. Die Fittinggruppe.- § 5. Minimale nichtnilpotente Gruppen.- § 6. Engelgruppen und engelsche Elemente.- § 7. Elementare Theorie der p-Gruppen.- § 8. Anzahlsätze.- § 9. Die Identitäten von P. Hall und Zassenhaus.- § 10. Reguläre p-Gruppen.- § 11. Metazyklische p-Gruppen.- § 12. Abelsche Normalteiler von p-Gruppen.- § 13. Spezielle und extraspezielle p-Gruppen.- § 14. p-Gruppenvon maximaler Klasse.- § 15. Die p-Sylowgruppen der symmetrischen Gruppen $${{\mathfrak{S}}_{{{{p}^{n}}}}}$$.- § 16. Die p-Sylowgruppen der linearen Gruppen GL (n, pf).- § 17. Binäre p-adische Gruppen.- § 18. Erzeugende und Relationen in p-Gruppen.- § 19. Automorphismen von p-Gruppen.- IV Verlagerung und p-nilpotente Gruppen.- § 1. Monomiale Darstellungen und Verlagerung.- § 2. Einfache Anwendungen der Verlagerung.- § 3. Die Grünschen Sätze.- § 4. p-nilpotente Gruppen.- § 5. Minimale nicht p-nilpotente Gruppen.- § 6. Das p-Nilpotenzkriterium von Thompson.- § 7. Nilpotente Untergruppen.- § 8. Gruppen mit regulärer Sylowgruppe.- V Darstellungstheorie.- § 1. Algebren und ihre Darstellungen.- § 2. Das Jacobson-Radikal.- § 3. Vollständig reduzible Moduln und halbeinfache Algebren.- § 4. Die Wedderburnschen Sätze.- § 5. Gruppencharaktere.- § 6. Charaktere abelscher Gruppen.- § 7. Die Sätze von Burnside, Wielandt und Frobenius.- § 8. Frobeniusgruppen.- § 9. Tensorprodukte von Moduln und Algebren.- § 10. Tensorprodukte von Darstellungen.- § 11. Zerfällungskörper.- § 12. Ganzzahlige Darstellungen und Konstantenreduktion.- § 13. Algebraisch konjugierte Charaktere.- § 14. Der Schursche Index.- § 15. Die Klassenzahl.- § 16. Induzierte Darstellungen.- § 17. Einschränkung von irreduziblen Darstellungen auf Normalteiler..- § 18. Monomiale Darstellungen.- § 19. Die Sätze von R. Brauer.- § 20. Charaktere von Permutationsgruppen.- § 21. Permutationsgruppen von Primzahlgrad.- § 22. Involutionen.- § 23. Schurscher Multiplikator und Darstellungsgruppen.- § 24. Projektive Darstellungen.- § 25. Berechnung des Schurschen Multiplikators.- VI Auflösbare Gruppen.- § 1. Hallgruppen auflösbarer Gruppen.- § 2. Sylowsysteme auflösbarer Gruppen.-§ 3. Gruppen mit vielen Sylowsystemen.- § 4. Produkte von nilpotenten Gruppen.- § 5. Hauptreihen.- § 6. Elementare Theorie der p-Länge.- § 7. Formationen.- § 8. Rang und Frattinigruppe.- § 9. Überauflösbare Gruppen.- § 10. Produkte von zyklischen Gruppen.- § 11. Systemnormalisatoren auflösbarer Gruppen.- § 12. Cartergruppen auflösbarer Gruppen.- § 13. Gruppen, in denen die Systemnormalisatoren Cartergruppen sind.- § 14. Auflösbare Gruppen mit lauter abelschen Sylowgruppen.- § 15. Sylowsysteme und Cartergruppen.- Namenverzeichnis.- Errata.