Fastperiodische Funktionen: Grundlehren der mathematischen Wissenschaften, cartea 61
Autor Wilhelm Maakde Limba Germană Paperback – 6 mai 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 418.83 lei
Nou
Puncte Express: 628
Preț estimativ în valută:
80.15€ • 83.17$ • 66.99£
80.15€ • 83.17$ • 66.99£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642866883
ISBN-10: 3642866883
Pagini: 252
Ilustrații: VIII, 240 S.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:2. Aufl. 1967. Softcover reprint of the original 2nd ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642866883
Pagini: 252
Ilustrații: VIII, 240 S.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:2. Aufl. 1967. Softcover reprint of the original 2nd ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Von den Darstellungen endlicher Gruppen.- § 1. Definition der Gruppe.- § 2. Endliche zyklische Gruppen.- § 3. Darstellungen und Darstellungsmoduln.- § 4. Normaldarstellungen.- § 5. Das Schursche Lemma.- § 6. Endliche Gruppen.- II. Abstrakte Theorie der fastperiodischen Funktionen auf Gruppen.- Begriff der fastperiodischen Funktion.- Mittelwerttheorie.- Der Hauptsatz.- III. Periodische Funktionen.- § 19. Der Weierstraß sehe Approximationssatz.- § 20. Der Satz von Fejér.- §21. Weitere Sätze über Fourierreihen.- §22. Periodische Funktionen von mehreren Variabein.- IV. Die eigentlichen fastperiodischen Funktionen.- Folgerungen aus der abstrakten Theorie.- Elementarer Beweis des Approximationssatzes.- Fourierreihen eigentlich fastperiodischer Funktionen.- V. Theorie der Darstellungen und Fourierreihen auf beliebigen Gruppen.- §30. Die beschränkten Darstellungen.- §31. Fourierreihen fastperiodischer Funktionen.- §32. Fourierreihen in Moduln fastperiodischer Funktionen.- § 33. Summierung von Fourierreihen.- § 34. Linear unabhängige Fourierexponenten.- VI. Kompakte Gruppen.- Die fastperiodischen Funktionen auf kompakten Gruppen.- Zu Hilberts fünftem Problem.- Konstruktion einer endlichen Darstellung.- Die fastperiodischen Funktionen auf halbeinfachen Gruppen.- VII. Kugelfunktionen.- §46. Fastperiodische Funktionen in homogenen Räumen.- §47. Die Drehungsgruppe.- §48. Darstellungen der Drehungsgruppe.- §49. Die fastperiodischen Funktionen der Kugel.- Anhang. Literaturhinweise.