Cantitate/Preț
Produs

Grundzüge der Theoretischen Logik: Grundlehren der mathematischen Wissenschaften, cartea 27

Autor David Hilbert, Wilhelm Ackermann
de Limba Germană Paperback – 8 dec 2011

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 46859 lei

Nou

Puncte Express: 703

Preț estimativ în valută:
8967 9431$ 7493£

Carte tipărită la comandă

Livrare economică 09-23 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642654015
ISBN-10: 3642654010
Pagini: 204
Ilustrații: VIII, 188 S.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.29 kg
Ediția:6. Aufl. 1959
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Erstes Kapitel Der Aussagenkalkül.- § 1. Einführung der logischen Grundverknüpfungen.- § 2. Die Aussagenverknüpfungen als Wahrheitsfunktionen.- § 3. Einführung von Variablen; allgemeingültige Aussagenformen.- § 4. Äquivalenzen; Entbehrlichkeit von Grundverknüpfungen.- § 5. Die konjunktive und die disjunktive Normalform für Ausdrücke.- § 6. Das Prinzip der Dualität.- § 7. Mannigfaltigkeit der Aussageformen, die mit gegebenen Aussage variablen gebildet werden können.- § 8. Erfüllbarkeit einer Aussageform; Folgerungen aus gegebenen Axiomen.- § 9. Axiomatik des Aussagenkalküls.- *§ 10. Der intuitionistische Aussagenkalkül.- *§ 11. Der Begriff einer strengen Implikation.- Übungen zum ersten Kapitel.- Zweites Kapitel Der Klassenkalkül.- § 1. Klassenverknüpfungen und die Beziehungen zwischen Klassen.- § 2. Die allgemeingültigen Ausdrücke des Klassenkalküls.- § 3. Systematische Ableitung der traditionellen Aristotelischen Schlüsse.- Übungen zum zweiten Kapitel.- Drittes Kapitel Der engere Prädikatenkalkül.- § 1. Unzulänglichkeit des bisherigen Kalküls.- § 2. Methodische Grundgedanken des Prädikatenkalküls.- § 3. Ausdrücke und ihre Allgemeingültigkeit.- § 4. Ein Axiomensystem für die allgemeingültigen Ausdrücke.- § 5. Sätze über das Axiomensystem.- § 6. Die Ersetzungsregel; Bildung des Gegenteils eines Ausdrucks; das Dualitätsprinzip.- § 7. Die pränexe Normalform; die Skolemsche Normalform.- § 8. Die Widerspruchsfreiheit, Unabhängigkeit und Vollständigkeit des Axiomensystems.- § 9. Der Prädikatenkalkül mit Identität.- § 10. Axiomatik wissenschaftlicher Theorien; mehrsortiger Prädikatenkalkül; Axiomensysteme der ersten und der zweiten Stufe.- § 11. Das Entscheidungsproblem.- § 12. Der Begriff „derjenige,welcher“; Einführung von Funktionen.- Übungen zum dritten Kapitel.- Viertes Kapitel Der erweiterte Prädikatenkalkül.- § 1. Erweiterung des Prädikatenkalküls durch Hinzunahme der Quantoren für Prädikaten variable.- § 2. Einführung von Prädikatenprädikaten; logische Behandlung des Anzahlbegriffs.- § 3. Darstellung der Grundbegriffe der Mengenlehre im erweiterten Kalkül.- § 4. Die logischen Paradoxien.- § 5. Der Stufenkalkül.- § 6. Anwendung des Stufenkalküls.- Namen- und Sachverzeichnis.