Handbook of Elliptic Integrals for Engineers and Scientists: Grundlehren der mathematischen Wissenschaften, cartea 67
Autor Paul F. Byrd, Morris David Friedmanen Limba Engleză Paperback – 20 noi 2013
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 699.21 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- 20% Preț: 753.24 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- Preț: 338.54 lei
- 15% Preț: 565.23 lei
- 15% Preț: 676.77 lei
- Preț: 333.01 lei
- 15% Preț: 448.26 lei
- Preț: 337.84 lei
- Preț: 458.97 lei
- 15% Preț: 428.98 lei
- Preț: 432.67 lei
- 15% Preț: 671.33 lei
- Preț: 400.88 lei
- 15% Preț: 420.92 lei
- 15% Preț: 500.00 lei
- 15% Preț: 558.57 lei
- Preț: 334.90 lei
- 18% Preț: 689.22 lei
- Preț: 367.63 lei
- 15% Preț: 430.82 lei
- 15% Preț: 455.71 lei
- Preț: 440.15 lei
- Preț: 330.52 lei
- Preț: 343.10 lei
- Preț: 462.47 lei
- 15% Preț: 424.02 lei
- Preț: 397.78 lei
- Preț: 368.14 lei
- Preț: 397.23 lei
- 15% Preț: 550.38 lei
- Preț: 471.60 lei
- Preț: 341.65 lei
- Preț: 367.42 lei
- Preț: 397.78 lei
- 18% Preț: 687.41 lei
- Preț: 429.93 lei
- Preț: 366.15 lei
- Preț: 340.74 lei
Preț: 691.30 lei
Preț vechi: 843.05 lei
-18% Nou
Puncte Express: 1037
Preț estimativ în valută:
132.38€ • 143.19$ • 110.30£
132.38€ • 143.19$ • 110.30£
Carte tipărită la comandă
Livrare economică 11-25 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642651403
ISBN-10: 3642651402
Pagini: 380
Ilustrații: XVI, 360 p. 7 illus.
Dimensiuni: 152 x 229 x 20 mm
Greutate: 0.51 kg
Ediția:2nd ed. 1971. Softcover reprint of the original 2nd ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642651402
Pagini: 380
Ilustrații: XVI, 360 p. 7 illus.
Dimensiuni: 152 x 229 x 20 mm
Greutate: 0.51 kg
Ediția:2nd ed. 1971. Softcover reprint of the original 2nd ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Definitions and Fundamental Relations.- 110. Elliptic Integrals.- 120. Jacobian Elliptic Functions.- 130. Jacobi’s Inverse Elliptic Functions.- 140. Jacobian Zeta Function.- 150. Heuman’s Lambda Function.- 160. Transformation Formulas for Elliptic Functions and Elliptic Integrals.- Reduction of Algebraic Integrands to Jacobian Elliptic Functions.- 200. Introduction.- 210. Integrands Involving Square Roots of Sums and Differences of Squares.- 230. Integrands Involving the Square root of a Cubic.- 250. Integrands Involving the Square root of a Quartic.- 270. Integrands Involving Miscellaneous Fractional Powers of Polynomials.- Reduction of Trigonometric Integrands to Jacobian Elliptic Functions.- Reduction of Hyperbolic Integrands to Jacobian Elliptic Functions.- Tables of Integrals of Jacobian Elliptic Functions.- 310. Recurrence Formulas for the Integrals of the Twelve Jacobian Elliptic Functions.- 330. Additional Recurrence Formulas.- 360. Integrands Involving Various Combinations of Jacobian Elliptic Functions.- 390. Integrals of Jacobian Inverse Elliptic Functions.- Elliptic Integrals of the Third Kind.- 400. Introduction.- 410. Table of Integrals.- Table of Miscellaneous Elliptic Integrals Involving Trigonometric or Hyperbolic Integrands.- 510. Single Integrals.- 530. Multiple Integrals.- Elliptic Integrals Resulting from Laplace Transformations.- Hyperelliptic Integrals.- 575. Introduction.- 576. Table of Integrals.- Integrals of the Elliptic Integrals.- 610. With Respect to the Modulus.- 630. With Respect to the Argument.- Derivatives.- 710. With Respect to the Modulus.- 730. With Respect to the Argument.- 733. With Respect to the Parameter.- Miscellaneous Integrals and Formulas.- Expansions in Series.- 900. Developments of the Elliptic Integrals.- 907.Developments of Jacobian Elliptic Functions.- 1030. Weierstrassian Elliptic Functions and Elliptic Integrals.- Definition, p. 308. — Relation to Jacobian elliptic functions, p. 309. — Fundamental relations, p. 309. — Derivatives, p. 309. — Special values, p. 310. — Addition formulas, p. 310. — Relation to Theta functions, p. 310. — Weierstrassian normal elliptic integrals, p. 311. — Other integrals, p. 312. — Illustrative example, p. 313..- 1050. Theta Functions.- Definitions, p. 315. — Special values, p. 316. — Quasi-Addition Formulas, p.317. — Differential equation, p. 317. — Relation to Jacobian elliptic functions, p. 318. — Relation to elliptic integrals, p. 318..- 1060. Pseudo-elliptic Integrals.- Definition, p. 320. — Examples, p. 321..- Table of Numerical Values.- Supplementary Bibliography.