Homologie des algebres commutatives: Grundlehren der mathematischen Wissenschaften, cartea 206
Autor M. Andrefr Limba Franceză Paperback – 4 ian 2018
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 425.06 lei
Preț vechi: 531.32 lei
-20% Nou
Puncte Express: 638
Preț estimativ în valută:
81.34€ • 84.41$ • 67.99£
81.34€ • 84.41$ • 67.99£
Carte tipărită la comandă
Livrare economică 12-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642514500
ISBN-10: 3642514502
Ilustrații: CCCXLI, 15 p.
Ediția:1ère éd. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642514502
Ilustrații: CCCXLI, 15 p.
Ediția:1ère éd. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Table des matières.- I. Dérivations et différentielles.- a) Définitions.- b) Propriétés.- c) Compléments.- II. Complexes de modules.- a) Complexes simples.- b) Complexes doubles.- c) Foncteurs nuls.- III. Complexes cotangents.- a) Définitions de base.- b) Propriétés élémentaires.- c) Algèbres limites.- IV. Résolutions simpliciales.- a) Théorie simpliciale.- b) Résolutions simpliciales.- c) Quelques isomorphismes.- V. Suites de Jacobi-Zariski.- a) Suites exactes.- b) Démonstrations.- c) Résultats.- VI. Suites régulières.- a) Premiers modules d’homologie.- b) Diviseurs de zéro.- c) Suites régulières.- VII. Extensions de corps.- a) Résultats élémentaires.- b) Extensions séparables.- c) Généralisation.- VIII. Modules simpliciaux.- a) Modules d’homotopie.- b) Premiers résultats.- c) Quasi-applications.- IX. Résolutions pas-à-pas.- a) Préliminaires.- b) Constructions.- c) Naturalité.- X. Modules d’Artin-Rees.- a) Résolutions et homomorphismes.- b) Modules d’Artin-Rees.- c) Anneaux complets.-XI. Algèbres modèles.- a) Généralités.- b) Cas libre.- c) Cas projectif.- XII. Algèbres symétriques.- a) Résultats.- b) Démonstrations.- c) Complexes de Koszul.- XIII. Convergence.- a) Un résultat de Quillen.- b) Isomorphismes et algèbres symétriques.- c) Isomorphismes et modules Tor.- XIV. Algèbres extérieures.- a) Définitions.- b) Résultats.- c) Homomorphismes d’Eilenberg-MacLane.- XV. Deuxièmes modules d’homologie.- a) Préliminaires.- b) Résultats.- c) Une suite exacte.- XVI. Extensions d’algèbres.- a) Définitions et résultats.- b) Algèbres lisses.- c) Théorème de Cohen.- XVII. Dimension homologique.- a) Un résultat de Gulliksen.- b) Dimension homologique.- c) Démonstration.- XVIII. Algèbre homologique.- a) Quelques isomorphismes.- b) Produits tensoriels.- c) Algèbres anticommutatives.- XIX. Algèbres de Hopf.- a) Comultiplications.- b) Algèbres de Hopf.- c) Caractéristique nulle.- XX. Compléments.- a) Exercices.- b) Compléments.- c) Généralisations.- Appendice. Géométrie algébrique.- a) Faisceaux de modules.- b) Algèbre homologique.- c) Complexe cotangent.- d) Changement de base.- e) Résolutions simpliciales.- f) Suites de Jacobi-Zariski.- g) Extensions d’Algèbres.- h) Géométrie algébrique.- Supplément. Algèbres analytiques.- a) Homologie des algèbres analytiques.- b) Anneaux réguliers et intersections complètes.- c) Complexes cotangents acycliques.- Bibliographie.- Index des termes.- Index des symboles.