Homologie des algebres commutatives: Grundlehren der mathematischen Wissenschaften, cartea 206
Autor M. Andrefr Limba Franceză Paperback – 4 ian 2018
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.82 lei
- 18% Preț: 717.05 lei
- Preț: 410.20 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.72 lei
- 20% Preț: 753.23 lei
- 20% Preț: 824.72 lei
- 24% Preț: 632.96 lei
- Preț: 338.53 lei
- 15% Preț: 579.62 lei
- 14% Preț: 702.18 lei
- Preț: 333.01 lei
- 15% Preț: 459.64 lei
- Preț: 346.37 lei
- Preț: 470.61 lei
- 15% Preț: 439.87 lei
- Preț: 443.65 lei
- 15% Preț: 688.45 lei
- Preț: 411.02 lei
- 15% Preț: 431.60 lei
- 15% Preț: 512.72 lei
- 15% Preț: 572.79 lei
- Preț: 343.36 lei
- 18% Preț: 706.81 lei
- Preț: 376.93 lei
- 15% Preț: 441.77 lei
- 15% Preț: 467.27 lei
- Preț: 451.30 lei
- Preț: 338.87 lei
- Preț: 351.77 lei
- Preț: 474.20 lei
- 15% Preț: 434.79 lei
- Preț: 407.85 lei
- Preț: 377.45 lei
- Preț: 407.27 lei
- 15% Preț: 564.39 lei
- Preț: 483.55 lei
- Preț: 350.29 lei
- Preț: 376.72 lei
- Preț: 407.85 lei
- 18% Preț: 704.95 lei
- Preț: 440.84 lei
- Preț: 375.40 lei
- Preț: 349.34 lei
Preț: 425.05 lei
Preț vechi: 531.31 lei
-20% Nou
Puncte Express: 638
Preț estimativ în valută:
81.34€ • 85.55$ • 67.76£
81.34€ • 85.55$ • 67.76£
Carte tipărită la comandă
Livrare economică 31 decembrie 24 - 06 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642514500
ISBN-10: 3642514502
Ilustrații: CCCXLI, 15 p.
Ediția:1ère éd. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642514502
Ilustrații: CCCXLI, 15 p.
Ediția:1ère éd. 1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Table des matières.- I. Dérivations et différentielles.- a) Définitions.- b) Propriétés.- c) Compléments.- II. Complexes de modules.- a) Complexes simples.- b) Complexes doubles.- c) Foncteurs nuls.- III. Complexes cotangents.- a) Définitions de base.- b) Propriétés élémentaires.- c) Algèbres limites.- IV. Résolutions simpliciales.- a) Théorie simpliciale.- b) Résolutions simpliciales.- c) Quelques isomorphismes.- V. Suites de Jacobi-Zariski.- a) Suites exactes.- b) Démonstrations.- c) Résultats.- VI. Suites régulières.- a) Premiers modules d’homologie.- b) Diviseurs de zéro.- c) Suites régulières.- VII. Extensions de corps.- a) Résultats élémentaires.- b) Extensions séparables.- c) Généralisation.- VIII. Modules simpliciaux.- a) Modules d’homotopie.- b) Premiers résultats.- c) Quasi-applications.- IX. Résolutions pas-à-pas.- a) Préliminaires.- b) Constructions.- c) Naturalité.- X. Modules d’Artin-Rees.- a) Résolutions et homomorphismes.- b) Modules d’Artin-Rees.- c) Anneaux complets.-XI. Algèbres modèles.- a) Généralités.- b) Cas libre.- c) Cas projectif.- XII. Algèbres symétriques.- a) Résultats.- b) Démonstrations.- c) Complexes de Koszul.- XIII. Convergence.- a) Un résultat de Quillen.- b) Isomorphismes et algèbres symétriques.- c) Isomorphismes et modules Tor.- XIV. Algèbres extérieures.- a) Définitions.- b) Résultats.- c) Homomorphismes d’Eilenberg-MacLane.- XV. Deuxièmes modules d’homologie.- a) Préliminaires.- b) Résultats.- c) Une suite exacte.- XVI. Extensions d’algèbres.- a) Définitions et résultats.- b) Algèbres lisses.- c) Théorème de Cohen.- XVII. Dimension homologique.- a) Un résultat de Gulliksen.- b) Dimension homologique.- c) Démonstration.- XVIII. Algèbre homologique.- a) Quelques isomorphismes.- b) Produits tensoriels.- c) Algèbres anticommutatives.- XIX. Algèbres de Hopf.- a) Comultiplications.- b) Algèbres de Hopf.- c) Caractéristique nulle.- XX. Compléments.- a) Exercices.- b) Compléments.- c) Généralisations.- Appendice. Géométrie algébrique.- a) Faisceaux de modules.- b) Algèbre homologique.- c) Complexe cotangent.- d) Changement de base.- e) Résolutions simpliciales.- f) Suites de Jacobi-Zariski.- g) Extensions d’Algèbres.- h) Géométrie algébrique.- Supplément. Algèbres analytiques.- a) Homologie des algèbres analytiques.- b) Anneaux réguliers et intersections complètes.- c) Complexes cotangents acycliques.- Bibliographie.- Index des termes.- Index des symboles.