Optimal Control of Systems Governed by Partial Differential Equations: Grundlehren der mathematischen Wissenschaften, cartea 170
Autor Jacques Louis Lions Traducere de Sanjog K. Mitteren Limba Engleză Paperback – 12 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 723.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 584.63 lei
- 15% Preț: 700.05 lei
- Preț: 333.01 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 717.57 lei
Preț vechi: 875.09 lei
-18% Nou
Puncte Express: 1076
Preț estimativ în valută:
137.37€ • 142.79$ • 113.90£
137.37€ • 142.79$ • 113.90£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642650260
ISBN-10: 3642650260
Pagini: 416
Ilustrații: XI, 400 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642650260
Pagini: 416
Ilustrații: XI, 400 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Principal Notations.- I Minimization of Functions and Unilateral Boundary Value Problems.- 1. Minimization of Coercive Forms.- 2. A Direct Solution of Certain Variational Inequalities.- 3. Examples.- 4. A Comparison Theorem.- 5. Non Coercive Forms.- Notes.- II Control of Systems Governed by Elliptic Partial Differential Equations.- 1. Control of Elliptic Variational Problems.- 2. First Applications.- 3. A Family of Examples with N = 0 and $${U_{ad}}$$ Arbitrary.- 4. Observation on the Boundary.- 5. Control and Observation on the Boundary. Case of the Dirichlet Problem.- 6. Constraints on the State.- 7. Existence Results for Optimal Controls.- 8. First Order Necessary Conditions.- Notes.- III Control of Systems Governed by Parabolic Partial Differential Equations.- 1. Equations of Evolution.- 2. Problems of Control.- 3. Examples.- 4. Decoupling and Integro-Differential Equation of Riccati Type (I).- 5. Decoupling and Integro-Differential Equation of Riccati Type (II).- 6. Behaviour asT ? + ?.- 7. Problems which are not Necessarily Coercive.- 8. Other Observations of the State and other Types of Control.- 9. Boundary Control and Observation on the Boundary or of the Final State for a System Governed by a Mixed Dirichlet Problem.- 10. Controllability.- 11. Control via Initial Conditions; Estimation.- 12. Duality.- 13. Constraints on the Control and the State.- 14. Non Quadratic Cost Functions.- 15. Existence Results for Optimal Controls.- 16. First Order Necessary Conditions.- 17. Time Optimal Control.- 18. Miscellaneous.- Notes.- IV Control of Systems Governed by Hyperbolic Equations or by Equations which are well Posed in the Petrowsky Sense.- 1. Second Order Evolution Equations.- 2. Control Problems.- 3. Transposition and Applications to Control.- 4. Examples.- 5. Decoupling.- 6. Control via Initial Conditions. Estimation.- 7. Boundary Control (I).- 8. Boundary Control (II).- 9. Parabolic-Hyperbolic Systems.- 10. Existence Theorems.- Notes.- V Regularization, Approximation and Penalization.- 1. Regularization.- 2. Approximation in Terms of Systems of Cauchy-Kowaleska Type.- 3. Penalization.- Notes.