Cantitate/Preț
Produs

Spectra of Random and Almost-Periodic Operators: Grundlehren der mathematischen Wissenschaften, cartea 297

Autor Leonid Pastur, Alexander Figotin
en Limba Engleză Paperback – 10 dec 2011
In the last fifteen years the spectral properties of the Schrodinger equation and of other differential and finite-difference operators with random and almost-periodic coefficients have attracted considerable and ever increasing interest. This is so not only because of the subject's position at the in­ tersection of operator spectral theory, probability theory and mathematical physics, but also because of its importance to theoretical physics, and par­ ticularly to the theory of disordered condensed systems. It was the requirements of this theory that motivated the initial study of differential operators with random coefficients in the fifties and sixties, by the physicists Anderson, 1. Lifshitz and Mott; and today the same theory still exerts a strong influence on the discipline into which this study has evolved, and which will occupy us here. The theory of disordered condensed systems tries to describe, in the so-called one-particle approximation, the properties of condensed media whose atomic structure exhibits no long-range order. Examples of such media are crystals with chaotically distributed impurities, amorphous substances, biopolymers, and so on. It is natural to describe the location of atoms and other characteristics of such media probabilistically, in such a way that the characteristics of a region do not depend on the region's position, and the characteristics of regions far apart are correlated only very weakly. An appropriate model for such a medium is a homogeneous and ergodic, that is, metrically transitive, random field.
Citește tot Restrânge

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 64202 lei

Preț vechi: 75532 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12287 12763$ 10206£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642743481
ISBN-10: 364274348X
Pagini: 600
Ilustrații: VIII, 587 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.83 kg
Ediția:1992
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Metrically Transitive Operators.- 1 Basic Definitions and Examples.- 2 Simple Spectral Properties of Metrically Transitive Operators.- Problems.- II. Asymptotic Properties of Metrically Transitive Matrix and Differential Operators.- 3 Review of Basic Results.- 4 Matrix Operators on ?2 (Zd).- 5 Schrödinger Operators and Elliptic Differential Operators on L2(Rd).- Problems.- III. Integrated Density of States in One-Dimensional Problems of Second Order.- 6 The Oscillation Theorem and the Integrated Density of States.- 7 Examples of Calculation of the Integrated Density of States.- Problems.- IV. Asymptotic Behavior of the Integrated Density of States at Spectral Boundaries in Multidimensional Problems.- 8 Stable Boundaries.- 9 Fluctuation Boundaries: General Discussion and Classical Asymptotics.- 10 Fluctuation Boundaries: Quantum Asymptotics.- Problems.- V. Lyapunov Exponents and the Spectrum in One Dimension.- 11 Existence and Properties of Lyapunov Exponents.- 12 Lyapunov Exponents and the Absolutely Continuous Spectrum.- 13 Lyapunov Exponents and the Point Spectrum.- Problems.- VI. Random Operators.- 14 The Lyapunov Exponent of Random Operators in One Dimension.- 15 The Point Spectrum of Random Operators.- Problems.- VII. Almost-Periodic Operators.- 16 Smooth Quasi-Periodic Potentials.- 17 Limit-Periodic Potentials.- 18 Unbounded Quasiperiodic Potentials.- Problems.- Appendix A: Nevanlinna Functions.- Appendix B: Distribution of Eigenvalues of Large Random Matrices.- List of Symbols.