Cantitate/Preț
Produs

Stochastic Analysis: Grundlehren der mathematischen Wissenschaften, cartea 313

Autor Paul Malliavin
en Limba Engleză Hardback – 16 apr 1997
This book accounts in 5 independent parts, recent main developments of Stochastic Analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.
Citește tot Restrânge

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 73601 lei

Preț vechi: 89757 lei
-18% Nou

Puncte Express: 1104

Preț estimativ în valută:
14087 14517$ 11893£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540570240
ISBN-10: 3540570241
Pagini: 364
Ilustrații: XII, 347 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.69 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Contents: Part I. Differential Calculus on Gaussian Probability Spaces.- Ch. 1 Gaussian probability spaces.- Ch. 2 Gross-Stroock Sobolev Spaces over a Gaussian Probability Space.- Ch. 3 Smoothness of Laws.- Part II. Quasi-Sure Analysis.- Ch. 4 Foundations of Quasi-Sure Analysis: Hierarchy of Capacities and Precise Gaussian Probability Space.- Ch. 5 Differential Geometry on a Precise Gaussian Probability Space.- Part III. Stochastic Integrals.- Ch. 6 White Noise Stochastic Integrals as Divergence.- Ch. 7 Ito's Theory of Stochastic Integration.- Part IV. Stochastic Differential Equations.- Ch. 8 From Ordinary Differential Equations to Stochastic Flow: The Transfer Principle.- Ch. 9 Elliptic Estimates through Stochastic Analysis.- Part V. Stochastic Analysis in Infinite Dimensions.- Ch. 10 Stochastic Analysis on Wiener Spaces.- Ch. 11 Path Spaces and their Tangent Spaces.- Index.- Bibliography.