Uniformisierung: Grundlehren der mathematischen Wissenschaften, cartea 64
Autor Rolf Nevanlinnade Limba Germană Paperback – 18 sep 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.82 lei
- 18% Preț: 717.05 lei
- Preț: 410.20 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.72 lei
- 20% Preț: 753.23 lei
- 20% Preț: 824.72 lei
- 24% Preț: 632.96 lei
- Preț: 338.53 lei
- 15% Preț: 579.62 lei
- 14% Preț: 702.18 lei
- Preț: 333.01 lei
- 15% Preț: 459.64 lei
- Preț: 346.37 lei
- Preț: 470.61 lei
- 15% Preț: 439.87 lei
- Preț: 443.65 lei
- 15% Preț: 688.45 lei
- Preț: 411.02 lei
- 15% Preț: 431.60 lei
- 15% Preț: 512.72 lei
- 15% Preț: 572.79 lei
- Preț: 343.36 lei
- 18% Preț: 706.81 lei
- Preț: 376.93 lei
- 15% Preț: 441.77 lei
- 15% Preț: 467.27 lei
- Preț: 451.30 lei
- Preț: 338.87 lei
- Preț: 351.77 lei
- Preț: 474.20 lei
- 15% Preț: 434.79 lei
- Preț: 407.85 lei
- Preț: 377.45 lei
- Preț: 407.27 lei
- 15% Preț: 564.39 lei
- Preț: 483.55 lei
- Preț: 350.29 lei
- Preț: 376.72 lei
- Preț: 407.85 lei
- 18% Preț: 704.95 lei
- Preț: 440.84 lei
- Preț: 375.40 lei
- Preț: 349.34 lei
Preț: 447.76 lei
Nou
Puncte Express: 672
Preț estimativ în valută:
85.70€ • 89.32$ • 71.34£
85.70€ • 89.32$ • 71.34£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642885624
ISBN-10: 3642885624
Pagini: 408
Ilustrații: X, 394 S. 5 Abb.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 2nd ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642885624
Pagini: 408
Ilustrații: X, 394 S. 5 Abb.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 2nd ed. 1967
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Erstes Kapitel. Algebraische Funktionen.- § 1. Algebraische Funktionselemente.- § 2. Konstruktion der algebraischen Funktion aus ihren Elementen.- Zweites Kapitel. Begriff der Riemannschen Fläche.- § 1. Umgebungsraum, Mannigfaltigkeit, Riemannsche Fläche.- § 2. Homologiegruppen.- § 3. Fundamentalgruppe.- § 4. Uberlagerungsflächen.- § 5. Triangulierung einer Mannigfaltigkeit.- Drittes Kapitel. Funktionentheoretische Grundsätze.- § 1. Funktionen, Differentiale.- § 2. Funktionen und Kovarianten auf geschlossenen Flächen.- § 3. Analytische Fortsetzung.- § 4. Das Maximum- und Minimumprinzip.- § 5. Integralsätze.- Viertes Kapitel. Existenzsätze.- § 1. Das alternierende Verfahren von Schwarz.- § 2. Lösung der Randwertaufgabe für Kreisbereiche.- § 3. Abzählbarkeitsaxiom.- § 4. Lösungen mit vorgeschriebenen Singularitäten.- § 5. Geschlossene Flächen.- § 6. Lösung der Randwertaufgaben für beliebige Jordanbereiche.- Fünftes Kapitel. Geschlossene Riemannsche Flächen.- § 1. Riemannsche Flächen in Polygondarstellung.- § 2. Differentiale erster Gattung.- § 3. Differentiale zweiter und dritter Gattung.- § 4. Rationale Funktionen.- § 5. Integrale algebraischer Funktionen.- Sechstes Kapitel. Der Riemannsche Abbildungssatz.- § 1. Vorbereitende Bemerkungen.- § 2. Greensche Funktion einer offenen Fläche.- § 3. Einfach zusammenhängende Flächen vom hyperbolischen Typ.- § 4. Der parabolische Fall.- Siebentes Kapitel. Gruppen von linearen Transformationen.- § 1. Lineare Transformationen.- § 2. Diskontinuierliche Gruppen von konformen Selbstabbildungen des Einheitskreises.- § 3. Normalform des Fundamentalpolygons.- § 4. Das metrische Fundamentalpolygon.- § 5. Konforme Selbstabbildungen der Zahlenebene.- Achtes Kapitel. Uniformisierung.- § 1.Normalform Riemannscher Flächen.- § 2 Fortsetzbarkeit einer Riemannschen Fläche.- § 3. Konforme Klassen.- § 4. Uniformisierung.- Neuntes Kapitel. Schlichtartige Flächen.- § 1. Vorbereitende Bemerkungen.- § 2. Berandete schlichtartige Flächen.- § 3. Extremalsätze über Schlitzabbildungen.- § 4. Abbildung offener schlichtartiger Flächen.- § 5. Extremaleigenschaften der Spanne.- § 6. Weitere normierte Schlitzabbildungen von Flächen mit positiver Spanne.- § 7. Anwendung auf die Uniformisierung.- Zehntes Kapitel. Offene Riemannsche Flächen.- § 1. Aufbau einer offenen Fläche.- § 2. Greensche Funktion, Kapazität, harmonisches Ma13.- § 3. Randwertprobleme für nichtkompakte Teilflächen.- § 4. Normierte Potentiale mit vorgeschriebenen Singularitäten.- § 5. Automorphe Potentiale.- § 6. Abelsche Integrale erster Gattung.- § 7. Unterräume von quadratisch integrablen Differentialen.- § 8. Besondere Flächenklassen.- § 9. Metrische Kriterien.- Register.