Cantitate/Preț
Produs

Classification Theory of Riemann Surfaces: Grundlehren der mathematischen Wissenschaften, cartea 164

Autor Leo Sario, Mitsuru Nakai
en Limba Engleză Paperback – 31 mai 2012
The purpose of the present monograph is to systematically develop a classification theory of Riemann surfaces. Some first steps will also be taken toward a classification of Riemannian spaces. Four phases can be distinguished in the chronological background: the type problem; general classification; compactifications; and extension to higher dimensions. The type problem evolved in the following somewhat overlapping steps: the Riemann mapping theorem, the classical type problem, and the existence of Green's functions. The Riemann mapping theorem laid the foundation to classification theory: there are only two conformal equivalence classes of (noncompact) simply connected regions. Over half a century of efforts by leading mathematicians went into giving a rigorous proof of the theorem: RIEMANN, WEIERSTRASS, SCHWARZ, NEUMANN, POINCARE, HILBERT, WEYL, COURANT, OSGOOD, KOEBE, CARATHEODORY, MONTEL. The classical type problem was to determine whether a given simply connected covering surface of the plane is conformally equivalent to the plane or the disko The problem was in the center of interest in the thirties and early forties, with AHLFORS, KAKUTANI, KOBAYASHI, P. MYRBERG, NEVANLINNA, SPEISER, TEICHMÜLLER and others obtaining incisive specific results. The main problem of finding necessary and sufficient conditions remains, however, unsolved.
Citește tot Restrânge

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 63030 lei

Preț vechi: 74153 lei
-15% Nou

Puncte Express: 945

Preț estimativ în valută:
12064 12574$ 10043£

Carte tipărită la comandă

Livrare economică 07-21 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642482717
ISBN-10: 3642482716
Pagini: 472
Ilustrații: XX, 450 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1970
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I Dirichlet Finite Analytic Functions.- § 1. Arbitrary Surfaces.- § 2. Plane Regions.- § 3. Covering Surfaces of the Sphere.- § 4. Covering Surfaces of Riemann Surfaces.- II Other Classes of Analytic Functions.- §1. Inclusion Relations.- § 2. Plane Regions and Conformal Invariants.- § 3. K-Functions.- III Dirichlet Finite Harmonic Functions.- § 1. Royden’s Compactification.- § 2. Dirichlet’s Problem.- § 3. Invariance under Deformation.- IV Other Classes of Harmonic Functions.- §1. Wiener’s Compactification.- § 2. Dirichlet’s Problem.- § 3. Lindelofian Meromorphic Functions.- § 4. Invariance under Deformation.- V Functions with Logarithmic Singularities.- §1. Capacity Functions.- § 2. Parabolic and Hyperbolic Surfaces.- § 3. Existence of Kernels.- VI Functions with Iversen$#x2019;s Property.- §Classes OA°D and OA°B.- § 2. Boundary Points of Positive Measure.- Appendix. Higher Dimensions.- Author Index.- Subject and Notation Index.