Cantitate/Preț
Produs

Convex Analysis and Minimization Algorithms I: Fundamentals: Grundlehren der mathematischen Wissenschaften, cartea 305

Autor Jean-Baptiste Hiriart-Urruty, Claude Lemarechal
en Limba Engleză Hardback – 21 oct 1993
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 87866 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 15 mai 2011 87866 lei  6-8 săpt.
Hardback (1) 88438 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 21 oct 1993 88438 lei  6-8 săpt.

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 88438 lei

Preț vechi: 107852 lei
-18% Nou

Puncte Express: 1327

Preț estimativ în valută:
16927 17595$ 14021£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540568506
ISBN-10: 3540568506
Pagini: 442
Ilustrații: XVIII, 418 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.78 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Table of Contents Part I.- I. Convex Functions of One Real Variable.- II. Introduction to Optimization Algorithms.- III. Convex Sets.- IV. Convex Functions of Several Variables.- V. Sublinearity and Support Functions.- VI. Subdifferentials of Finite Convex Functions.- VII. Constrained Convex Minimization Problems: Minimality Conditions, Elements of Duality Theory.- VIII. Descent Theory for Convex Minimization: The Case of Complete Information.- Appendix: Notations.- 1 Some Facts About Optimization.- 2 The Set of Extended Real Numbers.- 3 Linear and Bilinear Algebra.- 4 Differentiation in a Euclidean Space.- 5 Set-Valued Analysis.- 6 A Bird’s Eye View of Measure Theory and Integration.- Bibliographical Comments.- References.

Recenzii

From the reviews: "... The book is very well written, nicely illustrated, and clearly understandable even for senior undergraduate students of mathematics... Throughout the book, the authors carefully follow the recommendation by A. Einstein: 'Everything should be made as simple as possible, but not simpler.'"