Foundations of Modern Potential Theory: Grundlehren der mathematischen Wissenschaften, cartea 180
Autor Naum S. Landkof Traducere de A. P. Doohovskoyen Limba Engleză Paperback – 15 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.82 lei
- 18% Preț: 723.26 lei
- Preț: 410.20 lei
- 24% Preț: 587.84 lei
- 17% Preț: 498.71 lei
- 20% Preț: 753.21 lei
- 20% Preț: 824.70 lei
- 24% Preț: 632.94 lei
- Preț: 338.52 lei
- 15% Preț: 584.63 lei
- 14% Preț: 708.28 lei
- Preț: 333.00 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 771.21 lei
Preț vechi: 940.51 lei
-18% Nou
Puncte Express: 1157
Preț estimativ în valută:
147.57€ • 155.85$ • 122.81£
147.57€ • 155.85$ • 122.81£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642651854
ISBN-10: 3642651852
Pagini: 444
Ilustrații: X, 426 p.
Dimensiuni: 152 x 229 x 23 mm
Greutate: 0.59 kg
Ediția:1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642651852
Pagini: 444
Ilustrații: X, 426 p.
Dimensiuni: 152 x 229 x 23 mm
Greutate: 0.59 kg
Ediția:1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
§ 1. Spaces of measures and signed measures. Operations on measures and signed measures (No. 1–5).- § 2. Space of distributions. Operations on distributions (No. 6–10)..- § 3. The Fourier transform of distributions (No. 11–13).- I. Potentials and their basic properties.- § 1. M. Riesz kernels (No. 1–3).- § 2. Superharmonic functions (No. 4–5).- § 3. Definition of potentials and their simplest properties (No. 6–9)...- § 4. Energy. Potentials with finite energy (No. 10–15).- § 5. Representation of superharmonic functions by potentials (No. 16–18).- § 6. Superharmonic functions of fractional order (No. 19–25).- II. Capacity and equilibrium measure.- § 1. Equilibrium measure and capacity of a compact set (No. 1–5).- § 2. Inner and outer capacities and equilibrium measures. Capacitability (No. 6–10).- § 3. Metric properties of capacity (No. 11–14).- §4. Logarithmic capacity (No. 15–18).- III. Sets of capacity zero. Sequences and bounds for potentials.- § 1. Polar sets (No. 1–2).- § 2. Continuity properties of potentials (No. 3–4).- § 3. Sequences of potentials of measures (No. 5–8).- § 4. Metric criteria for sets of capacity zero and bounds for potentials (No. 9–11).- IV. Balayage, Green functions, and the Dirichlet problem.- § 1. Classical balayage out of a region (No. 1–6).- § 2. Balayage for arbitrary compact sets (No. 7–11).- § 3. The generalized Dirichlet problem (No. 12–14).- § 4. The operator approach to the Dirichlet problem and the balayage problem (No. 15–18).- § 5. Balayage for M. Riesz kernels (No. 19–23)...- § 6. Balayage onto Borel sets (No. 24–25).- V. Irregular points.- § 1. Irregular points of Borel sets. Criteria for irregularity (No. 1–6)...- §2. The characteristics and types ofirregular points (No. 7–8)…..- §3. The fine topology (No. 9–11).- § 4. Properties of set of irregular points (No. 12–15).- § 5. Stability of the Dirichlet problem. Approximation of continuous functions by harmonic functions (No. 16–22).- VI. Generalizations.- § 1. Distributions with finite energy and their potentials (No. 1–5)...- §2. Kernels of more general type (No. 6–11).- § 3. Dirichlet spaces (No. 12–15).- Comments and bibliographic references.