Handbook for Automatic Computation: Volume II: Linear Algebra: Grundlehren der mathematischen Wissenschaften, cartea 186
Autor John H. Wilkinson Editat de Alston S. Householder Friedrich L. Bauer Autor C. Reinschen Limba Engleză Paperback – 23 aug 2014
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 937.67 lei
Preț vechi: 1172.09 lei
-20% Nou
Puncte Express: 1407
Preț estimativ în valută:
179.45€ • 185.13$ • 151.87£
179.45€ • 185.13$ • 151.87£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642869426
ISBN-10: 3642869424
Pagini: 452
Ilustrații: IX, 441 p. 1 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.63 kg
Ediția:Softcover reprint of the original 1st ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642869424
Pagini: 452
Ilustrații: IX, 441 p. 1 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.63 kg
Ediția:Softcover reprint of the original 1st ed. 1971
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I Linear Systems, Least Squares and Linear Programming.- to Part I (J. H. Wilkinson) ..- Contribution I/1: Symmetric Decomposition of a Positive Definite Matrix.- Contribution I/2: Iterative Refinement of the Solution of a Positive Definite System of Equations.- Contribution I/3: Inversion of Positive Definite Matrices by the Gauss-Jordan Method.- Contribution I/4: Symmetric Decomposition of Positive Definite Band Matrices.- Contribution I/5: The Conjugate Gradient Method.- Contribution 1/6: Solution of Symmetric and Unsymmetric Band Equations and the Calculation of Eigenvectors of Band Matrices.- Contribution I/7: Solution of Real and Complex Systems of Linear Equations.- Contribution I/8: Linear Least Squares Solutions by Householder Transformations.- Contribution I/9: Elimination with Weighted Row Combinations for Solving Linear Equations and Least Squares Problems.- Contribution I/l0: Singular Value Decomposition and Least Squares Solutions.- Contribution I/l l: A Realization of the Simplex Method based on Triangular Decompositions.- II The Algebraic Eigenvalue Problem.- to Part II (J. H. Wilkinson).- Contribution II/l: The Jacobi Method for Real Symmetric Matrices.- Contribution II/2: Householder’s Tridiagonalization of a Symmetric Matrix.- Contribution II/3: The QR and QL Algorithms for Symmetric Matrices.- Contribution II/4: The Implicit QL Algorithm.- Contribution II/5: Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of Bisection.- Contribution II/6: Rational Q R Transformation with Newton Shift for Symmetric TridiagonalMatrices.- Contribution II/7: The QR Algorithm for Band Symmetric Matrices.- Contribution II/8: Tridiagonalization of a Symmetric Band Matrix.- Contribution II/9: Simultaneous Iteration Method for SymmetricMatrices.- Contribution II/l0: Reduction of the Symmetric Eigenproblem A x =?Bx and Related Problems to Standard Form.- Contribution II/11: Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors.- Contribution II/12: Solution to the Eigenproblem by a Norm Reducing Jacobi Type Method.- Contribution II/13: Similarity Reduction of a General Matrix to Hessenberg Form.- Contribution II/14: The QR Algorithm for Real Hessenberg Matrices.- Contribution II/15: Eigenvectors of Real and Complex Matrices by L R and Q R triangulari.- Contribution II/16: The Modified L R Algorithm for Complex Hessenberg Matrices.- Contribution II/l 7: Solution to the Complex Eigenproblem by a Norm Reducing Jacobi Type Method.- Contribution II/l 8: The Calculation of Specified Eigenvectors by Inverse Iteration.