Sommerfeldsche Polynommethode: Grundlehren der mathematischen Wissenschaften, cartea 185
Autor Adalbert Rubinowiczde Limba Germană Paperback – 21 ian 2012
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 592.31 lei
- 15% Preț: 709.22 lei
- Preț: 333.01 lei
- 15% Preț: 469.69 lei
- Preț: 353.89 lei
- Preț: 480.87 lei
- 15% Preț: 449.47 lei
- Preț: 453.32 lei
- 15% Preț: 703.54 lei
- Preț: 419.98 lei
- 15% Preț: 441.02 lei
- 15% Preț: 523.93 lei
- 15% Preț: 585.32 lei
- Preț: 350.83 lei
- 18% Preț: 722.30 lei
- Preț: 385.12 lei
- 15% Preț: 451.41 lei
- 15% Preț: 477.48 lei
- Preț: 461.15 lei
- Preț: 346.22 lei
- Preț: 359.40 lei
- Preț: 484.54 lei
- 15% Preț: 444.29 lei
- Preț: 416.75 lei
- Preț: 385.65 lei
- Preț: 416.15 lei
- 15% Preț: 576.73 lei
- Preț: 494.11 lei
- Preț: 357.89 lei
- Preț: 384.91 lei
- Preț: 416.75 lei
- 18% Preț: 720.39 lei
- Preț: 450.45 lei
- Preț: 383.55 lei
- Preț: 356.93 lei
Preț: 483.62 lei
Nou
Puncte Express: 725
Preț estimativ în valută:
92.62€ • 95.43$ • 77.59£
92.62€ • 95.43$ • 77.59£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642652233
ISBN-10: 3642652239
Pagini: 300
Ilustrații: XIV, 280 S.
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642652239
Pagini: 300
Ilustrații: XIV, 280 S.
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Kap. 1: Sommerfeldsche Polynommethode in ursprünglicher Fassung.- § 1. Der Sommerfeldsche Ansatz.- § 2. Bestimmung der Funktion E(x) und Definition der Invarianten S(x).- § 3. Ermittlung der Funktion W(x).- § 4. Bedingungen, die die Lösungen von Eigenwertproblemen der Quantentheorie zu erfüllen haben.- Kap. 2: Auflösung von Eigenwertproblemen mit Hilfe der gewöhnlichen Riemannschen P-Funktionen.- § 1. Eigenfunktionen mit gewöhnlichen Riemannschen P-Funktionen.- § 2. Zwei Beispiele: Eigenwertproblem der zugeordneten Kugelfunktionen und das des symmetrischen Kreisels.- § 3. Verwendung von Riemannschen P-Funktionen mit singulären Stellen in beliebigen Punkten.- § 4. Nochmals Eigenwertproblem der zugeordneten Kugelfunktionen als Beispiel.- § 5. Eigenwertproblem der verallgemeinerten zugeordneten Kugelfunktionen als Beispiel.- § 6. Kepler-Problem in der Hypersphäre als Beispiel.- Kap. 3: Auflösung von Eigenwertproblemen mit Hilfe konfluenter Riemannscher P-Funktionen.- § 1. Konfluente hypergeometrische Funktionen.- § 2. Lösung von Eigenwertproblemen mit Hilfe konfluenter P-Funktionen mit einer wesentlich singulären Stelle im Unendlichen. Funktionsklasse BI.- § 3. Zwei Beispiele: Eigenwertproblem des linearen, harmonischen Oszillators und der Radialfunktion eines Ein-Elektronen-Atoms.- § 4. Lösung von Eigenwertproblemen mit Hilfe konfluenter P-Funktionen mit einer wesentlich singulären Stelle im Unendlichen. Funktionsklasse BII.- § 5. Zwei Beispiele: Eigenwertproblem der Besselschen Funktionen und eine Beziehung zwischen zwei konfluenten hypergeometrischen Funktionen.- § 6. Lösung von Eigenwertproblemen mit Hilfe konfluenter P-Funktionen mit wesentlich singulären Stellen im Endlichen. Funktionsklasse CI.- § 7. Lösung von Eigenwertproblemen mitHilfe konfluenter P-Funktionen mit wesentlich singulären Stellen im Endlichen. Funktionsklasse CII.- Kap. 4: Formelsammlung und verschiedene Anwendungen.- § 1. Formelsammlung zur Sommerfeldschen Polynommethode.- § 2. Ermittlung von Potentialen, die mit Hilfe der Sommerfeldschen Polynommethode lösbare Eigenwertprobleme ergeben.- § 3. Umordnung von Eigenwertproblemen.- § 4. Zweiparametrige Eigenwertprobleme.- Kap. 5: Beziehungen zwischen der Faktorisierungs- und der Polynommethode.- § 1. Die Grundidee der Faktorisierungsmethode.- § 2. Paare von Rekursionsformeln für beliebige Eigenfunktionen eines gegebenen Satzes von Eigenwertproblemen.- § 3. Paare von Rekursionsformeln für die hypergeometrischen Funktionen.- § 4. Ableitung von Rekursionsformeln für Lösungen von Eigenwertproblemen, die sich mit Hilfe der Polynommethode herstellen lassen.- § 5. Faktorisierung des Eigenwertproblems der zugeordneten Kugelfunktionen als Beispiel.- § 6. Mit Hilfe der Polynommethode lösbare und zugleich auch faktorisierbare Eigenwertprobleme. Eigenlösungen mit gewöhnlichen hypergeometrischen Funktionen 2F1(a, b; c; ?).- § 7. Mit Hilfe der Polynommethode lösbare und zugleich auch faktorisierbare Eigenwertprobleme. Eigenlösungen mit konfluenten hypergeometrischen Funktionen 1F1(a; c; ?).- § 8. Typen von faktorisierbaren Eigenwertproblemen.- § 9. Faktorisierungsmethode und umgeordnete Eigenwertprobleme.- § 10. Zusammenhang zwischen der Faktorisierungsmethode und den Lie Algebren.- § 11. Vergleich der Faktorisierungs- und der Polynommethode.- Anhang B: Versuch einer Vereinfachung der Polynommethode.- Anhang C: Mit Hilfe der Polynommethode lösbare, jedoch nicht faktorisierbare Eigenwertprobleme.- Anhang F: Integration der Riccatischen Differentialgleichungen (5,6.11)und (5,6.35).- Namen- und Sachverzeichnis.