Theorie der Analytischen Funktionen Einer Komplexen Veränderlichen: Grundlehren der mathematischen Wissenschaften, cartea 77
Autor Heinrich Behnke, Friedrich Sommerde Limba Germană Paperback – 14 iun 1976
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 440.01 lei
Nou
Puncte Express: 660
Preț estimativ în valută:
84.22€ • 87.59$ • 70.57£
84.22€ • 87.59$ • 70.57£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540077688
ISBN-10: 3540077685
Pagini: 620
Ilustrații: XI, 604 S.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.86 kg
Ediția:3. Aufl. 1965. 2. Nachdruck 1976
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540077685
Pagini: 620
Ilustrații: XI, 604 S.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.86 kg
Ediția:3. Aufl. 1965. 2. Nachdruck 1976
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Lower undergraduateCuprins
Erstes Kapitel Analysis der komplexen Zahlen.- § 1. Die komplexen Zahlen.- § 2. Der unendlich feme Punkt und der chordale Abstand.- § 3. Grundlagen aus der mengentheoretischen Topologie.- § 4. Punktfolgen.- § 5. Stetige Abbildungen.- § 6. Kurven und Gebiete in der Ebene.- § 7. Stetige Funktionen einer komplexen Veränderlichen.- § 8. Stetige Funktionen einer komplexen Veranderlichen.- § 9. Kurvenintegrale.- § 10. Folgen von Funktionen.- § 11. Unendliche Reihen.- § 12. Vertauschung von Grenzprozessen.- Zweites Kapitel Die Fundamentalsatze über holomorphe Funktionen.- § 1. Der Begrifl der Holomorphie.- § 2. Der Cauchysche Integralsatz.- § 3. Der Satz von RIEMANN. Die Cauchyschen Integralformeln.- § 4. Unendliche Reihen holomorpher Funktionen.- § 5. Ergänzung reeller Funktionen zu holomorphen Funktionen.- § 6. Ganze Funktionen.- § 7. Normale Familien holomorpher Funktionen.- Anhang. Harmonische Funktionen.- Drittes Kapitel Die analytischen Funktionen, ihre singulären Stellen und ihre Entwicklungen.- § 1. Analytische Fortsetzung.- § 2. Das Schwarzsche Spiegelungsprinzip.- § 3. Singuläre Punkte. Die Laurentsche Entwicklung. Meromorphe Funktionen.- § 4. Das Residuum.- § 5. Anwendungen des Residuenkalküls.- § 6. Normale Familien meromorpher Funktionen.- § 7. Partialbruchentwicklung meromorpher Funktionen.- § 8. Funktionen mit vorgeschriebenen Nullstellen. Holomorphie- und Mero-morphiegebiete.- § 9. Die Quotientendarstellung meromorpher Funktionen und der Mittag-Lefllersche Anschmiegungssatz.- § 10. Entwicklungen nach Polynomen und rationalen Funktionen.- § 11. Fourierentwicklungen.- § 12. Entwicklungen nach Orthogonalfunktionen.- § 13. Quadratintegrierbare Funktionen als Hilbertscher Raum.- § 14. Asymptotische Entwicklungen.- ViertesKapitel Konforme Abbildungen.- § 1. Die Umkehrfunktionen.- § 2. Analytische Funktionen und konforme Abbildung.- § 3. Die linearen Transformationen.- § 4. Transformationsgruppen.- § 5. Das Schwarzsche Lemma und die invarianten Metriken der linearenTransformationsgruppen.- § 6. Innere Abbildungen mit Fixpunkten.- § 7. Der Riemannsche Abbildungssatz.- § 8. Das Verhalten der Abbildungsfunktionen am Rande.- § 9. Spiegelungen und analytische Fortsetzung.- § 10. Die Familie der schlinhten Funktionen. Verzerrungssätze.- Fünftes Kapitel Der Gesamtverlauf der analytischen Funktionen und ihre Riemannschen Flächen.- § 1. Beispiele mehrblättriger Riemannscher Flächen.- § 2. Allgemeine Einführung der Riemannschen Fläche.- § 3. Analysis auf konkreten Riemannschen Flächen.- § 4. Die algebraischen Funktionen.- § 5. Uniformisierungstheorie. Die universelle Überlagerungsfläche.- § 6. Uniformisierungstheorie. Die Typen der ÜberlagerungsFlächen.- § 7. Schleifenintegrale und transzendente Funktionen.- Anhang. Zur Topologie der algebraischen Riemannschen Flächen.- Sechstes Kapitel Funktionen auf Riemannschen Flächen.- § 1. Eigentlich diskontinuierliche Gruppen linearer Transformationen.- § 2. Die Konstruktion automorpher Funktionen. Poincarésche Thetareihen. Elliptische Funktionen.- § 3. Differentiale, Integrale und Divisoren auf Riemannschen Flächen.- § 4. Der Satz von Riemann-Roch. Abelsche Differentiale.- § 5. Integrale und Funktionen auf kompakten Riemannschen Flächen.- § 6. Funktionen auf nicht kompakten Riemannschen Flächen.- Namen- und Sachverzeichnis.