Approximation of Functions of Several Variables and Imbedding Theorems: Grundlehren der mathematischen Wissenschaften, cartea 205
Autor S.M. Nikol'skii Traducere de J. M. Danskinen Limba Engleză Paperback – 15 noi 2011
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 24% Preț: 728.15 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 20% Preț: 692.49 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 596.69 lei
- 15% Preț: 714.49 lei
- Preț: 333.01 lei
- 15% Preț: 473.16 lei
- Preț: 356.49 lei
- Preț: 484.43 lei
- 15% Preț: 452.79 lei
- Preț: 456.66 lei
- 15% Preț: 708.75 lei
- Preț: 423.08 lei
- 15% Preț: 444.29 lei
- 15% Preț: 527.79 lei
- 15% Preț: 589.65 lei
- Preț: 353.40 lei
- 18% Preț: 727.66 lei
- Preț: 387.96 lei
- 15% Preț: 454.74 lei
- 15% Preț: 481.03 lei
- Preț: 464.55 lei
- Preț: 348.77 lei
- Preț: 362.04 lei
- Preț: 488.12 lei
- 15% Preț: 447.57 lei
- Preț: 419.81 lei
- Preț: 388.52 lei
- Preț: 419.21 lei
- 15% Preț: 581.01 lei
- Preț: 497.75 lei
- Preț: 360.53 lei
- Preț: 387.75 lei
- Preț: 419.81 lei
- 18% Preț: 725.75 lei
- Preț: 453.78 lei
- Preț: 386.39 lei
Preț: 590.63 lei
Preț vechi: 694.86 lei
-15% Nou
Puncte Express: 886
Preț estimativ în valută:
113.03€ • 117.29$ • 94.47£
113.03€ • 117.29$ • 94.47£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642657139
ISBN-10: 3642657133
Pagini: 432
Ilustrații: VIII, 420 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1975
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642657133
Pagini: 432
Ilustrații: VIII, 420 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1975
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Preparatory Information.- 1.1. The Spaces C(?) and Lp(?).- 1.2. Normed Linear Spaces.- 1.3. Properties of the Space Lp(?).- 1.4. Averaging of Functions According to Sobolev.- 1.5. Generalized Functions.- 2. Trigonometric Polynomials.- 2.1. Theorems on Zeros. Linear Independence.- 2.2. Important Examples of Trigonometric Polynomials.- 2.3. The Trigonometric Interpolation Polynomial of Lagrange.- 2.4. The Interpolation Formula of M. Riesz.- 2.5. The Bernstein’s Inequality.- 2.6. Trigonometric Polynomials of Several Variables.- 2.7. Trigonometric Polynomials Relative to Certain Variables.- 3. Entire Functions of Exponential Type, Bounded on ?n.- 3.1. Preparatory Material.- 3.2. Interpolation Formula.- 3.3. Inequalities of Different Metrics for Entire Functions of Exponential Type.- 3.4. Inequalities of Different Dimensions for Entire Functions of Exponential Type.- 3.5. Subspaces of Functions of Given Exponential Type.- 3.6. Convolutions with Entire Functions of Exponential Type.- 4. The Function Classes W, H, B.- 4.1. The Generalized Derivative.- 4.2. Finite Differences and Moduli of Continuity.- 4.3. The Classes W, H, B.- 4.4. Representation of an Intermediate Derivate in Terms of a Derivative of Higher Order and the Function. Corollaries.- 4.5. More on Sobolev Averages.- 4.6. Estimate of the Increment Relative to a Direction.- 4.7. Completeness of the Spaces W, H, B.- 4.8. Estimates of the Derivative by the Difference Quotient.- 5. Direct and Inverse Theorems of the Theory of Approximation. Equivalent Norms.- 5.1. Introduction.- 5.2. AüDroximation Theorem.- 5.3. Periodic Classes.- 5.4. Inverse Theorems of the Theory of Approximations.- 5.5. Direct and Inverse Theorems on Best Approximations. Equivalent H-Norms.- 5.6. Definition of B-Classes with the Aid of0) over Functions of Exponential Type.- 8.8. Decomposition of a Regular Function into Series Relative to de la Vallée Poussin Sums.- 8.9. Representation of Functions of the Classes Bp?r in Terms of de la Vallée Poussin Series. Null Classes (1 ? p ? ?).- 8.10. Series Relative to Dirichlet Sums (1 < p < ?).- 9. The Liouville Classes L.- 9.1. Introduction.- 9.2. Definitions and BasicProperties of the Classes Lpr and pr.- 9.3. Interrelationships among Liouville and other Classes.- 9.4. Integral Representation of Anisotropic Classes.- 9.5. Imbedding Theorems.- 9.6. Imbedding Theorem with a Limiting Exponent.- 9.7. Nonequivalence of the Classes Bpr and Lpr.- Remarks.- Literature.- Index of Names.