Random Perturbations of Dynamical Systems: Grundlehren der mathematischen Wissenschaften, cartea 260
Autor Mark I. Freidlin Traducere de J. Szücs Autor Alexander D. Wentzellen Limba Engleză Paperback – 11 iun 2014
In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained.
Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 720.80 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 11 iun 2014 | 720.80 lei 6-8 săpt. | |
Hardback (1) | 724.84 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 7 iun 2012 | 724.84 lei 6-8 săpt. |
Din seria Grundlehren der mathematischen Wissenschaften
- Preț: 353.84 lei
- 18% Preț: 723.26 lei
- Preț: 410.21 lei
- 24% Preț: 587.87 lei
- 17% Preț: 498.73 lei
- Preț: 592.75 lei
- 24% Preț: 893.28 lei
- 20% Preț: 824.73 lei
- 24% Preț: 632.96 lei
- 15% Preț: 584.63 lei
- 14% Preț: 708.28 lei
- Preț: 333.01 lei
- 15% Preț: 463.61 lei
- Preț: 349.35 lei
- Preț: 474.65 lei
- 15% Preț: 443.67 lei
- Preț: 447.46 lei
- 15% Preț: 694.42 lei
- Preț: 414.57 lei
- 15% Preț: 435.33 lei
- 15% Preț: 517.16 lei
- 15% Preț: 577.75 lei
- Preț: 346.30 lei
- 18% Preț: 712.93 lei
- Preț: 380.17 lei
- 15% Preț: 445.58 lei
- 15% Preț: 471.31 lei
- Preț: 455.19 lei
- Preț: 341.78 lei
- Preț: 354.78 lei
- Preț: 478.30 lei
- 15% Preț: 438.54 lei
- Preț: 411.37 lei
- Preț: 380.72 lei
- Preț: 410.79 lei
- 15% Preț: 569.27 lei
- Preț: 487.73 lei
- Preț: 353.28 lei
- Preț: 379.96 lei
- Preț: 411.37 lei
- 18% Preț: 711.07 lei
- Preț: 444.63 lei
- Preț: 378.63 lei
- Preț: 352.33 lei
Preț: 720.80 lei
Preț vechi: 879.03 lei
-18% Nou
Puncte Express: 1081
Preț estimativ în valută:
137.97€ • 144.67$ • 113.100£
137.97€ • 144.67$ • 113.100£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642446870
ISBN-10: 3642446876
Pagini: 488
Ilustrații: XXVIII, 460 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:3rd ed. 2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642446876
Pagini: 488
Ilustrații: XXVIII, 460 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:3rd ed. 2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1.Random Perturbations.- 2.Small Random Perturbations on a Finite Time Interval.- 3.Action Functional.- 4.Gaussian Perturbations of Dynamical Systems. Neighborhood of an Equilibrium Point.- 5.Perturbations Leading to Markov Processes.- 6.Markov Perturbations on Large Time Intervals.- 7.The Averaging Principle. Fluctuations in Dynamical Systems with Averaging.- 8.Random Perturbations of Hamiltonian Systems.- 9. The Multidimensional Case.- 10.Stability Under Random Perturbations.- 11.Sharpenings and Generalizations.- References.- Index.
Recenzii
From the reviews of the third edition:
“The celebrated work of Ventsel and Freidlin has proved to be a major contribution in this development, with their phenomenal text Random Perturbations of Dynamical Systems, now in its third edition, playing a unique role. … The book under review has evolved since its first English edition was published in 1984, a translation from the Russian original of 1979. … it will attract an ever growing population of applied mathematicians to the fascinating new frontier of stochastic dynamics.” (Hong Qian and Hao Ge, SIAM Review, Vol. 55 (3), 2013)
“The celebrated work of Ventsel and Freidlin has proved to be a major contribution in this development, with their phenomenal text Random Perturbations of Dynamical Systems, now in its third edition, playing a unique role. … The book under review has evolved since its first English edition was published in 1984, a translation from the Russian original of 1979. … it will attract an ever growing population of applied mathematicians to the fascinating new frontier of stochastic dynamics.” (Hong Qian and Hao Ge, SIAM Review, Vol. 55 (3), 2013)
Textul de pe ultima copertă
Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been “rediscovered” in applied papers.
In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained.
Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.
In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained.
Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.
Caracteristici
Third revised and enlarged edition New chapters and enlarged bibliographic references A very detailed and deep mathematical treatment of the long term behavior of randomly perturbed dynamical systems Includes supplementary material: sn.pub/extras